基于白盒决策树的广域相量实时孤岛检测预防策略

M. Shivaie, Mohammad Mokhayeri, M. Narooie, M. Ansari
{"title":"基于白盒决策树的广域相量实时孤岛检测预防策略","authors":"M. Shivaie, Mohammad Mokhayeri, M. Narooie, M. Ansari","doi":"10.1109/TPEC51183.2021.9384919","DOIUrl":null,"url":null,"abstract":"With the ever-increasing energy demand and enormous development of generation capacity, modern bulk power systems are mostly pushed to operate with narrower security boundaries. Therefore, timely and reliable assessment of power system security is an inevitable necessity to prevent widespread blackouts and cascading outages. In this paper, a new white-box decision tree-based preventive strategy is presented to evaluate and enhance the power system dynamic security versus the credible N-K contingencies originating from transient instabilities. As well, a competent operating measure is expertly defined to detect and identify the islanding and non-islanding conditions with the aid of a wide-area phasor measurement system. The newly developed strategy is outlined by a three-level simulation with the aim of guaranteeing the power system dynamic security. In the first-level, six hundred islanding and non-islanding scenarios are generated using an enhanced version of the ID3 algorithm, referred to as the C4.5 algorithms. In the second-level, optimal C4.5 decision trees are offline trained based on operating parameters achieved by the reduction error pruning method. In the third level, however, all trained decision trees are rigorously investigated offline and online; and then, the most accurate and reliable decision tree is selected. The newly developed strategy is examined on the IEEE New England 39-bus test system, and its effectiveness is assured by simulation studies.","PeriodicalId":354018,"journal":{"name":"2021 IEEE Texas Power and Energy Conference (TPEC)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A White-Box Decision Tree-Based Preventive Strategy for Real-Time Islanding Detection Using Wide-Area Phasor Measurement\",\"authors\":\"M. Shivaie, Mohammad Mokhayeri, M. Narooie, M. Ansari\",\"doi\":\"10.1109/TPEC51183.2021.9384919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the ever-increasing energy demand and enormous development of generation capacity, modern bulk power systems are mostly pushed to operate with narrower security boundaries. Therefore, timely and reliable assessment of power system security is an inevitable necessity to prevent widespread blackouts and cascading outages. In this paper, a new white-box decision tree-based preventive strategy is presented to evaluate and enhance the power system dynamic security versus the credible N-K contingencies originating from transient instabilities. As well, a competent operating measure is expertly defined to detect and identify the islanding and non-islanding conditions with the aid of a wide-area phasor measurement system. The newly developed strategy is outlined by a three-level simulation with the aim of guaranteeing the power system dynamic security. In the first-level, six hundred islanding and non-islanding scenarios are generated using an enhanced version of the ID3 algorithm, referred to as the C4.5 algorithms. In the second-level, optimal C4.5 decision trees are offline trained based on operating parameters achieved by the reduction error pruning method. In the third level, however, all trained decision trees are rigorously investigated offline and online; and then, the most accurate and reliable decision tree is selected. The newly developed strategy is examined on the IEEE New England 39-bus test system, and its effectiveness is assured by simulation studies.\",\"PeriodicalId\":354018,\"journal\":{\"name\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC51183.2021.9384919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC51183.2021.9384919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着能源需求的不断增长和发电能力的巨大发展,现代大容量电力系统大多被要求在更窄的安全边界下运行。因此,及时、可靠地对电力系统进行安全评估是防止大面积停电和级联停电的必然需要。本文提出了一种新的基于白盒决策树的预防策略来评估和提高电力系统的动态安全性,以应对由暂态不稳定引起的可靠N-K事故。此外,还专门定义了一种有效的操作措施,以借助广域相量测量系统来检测和识别孤岛和非孤岛状况。以保证电力系统的动态安全为目标,对新提出的策略进行了三层仿真。在第一级,使用ID3算法的增强版本(称为C4.5算法)生成600个孤岛和非孤岛场景。第二层,基于约简误差剪枝法得到的运行参数离线训练最优C4.5决策树。然而,在第三个层次,所有训练好的决策树都被严格地研究了离线和在线;然后,选择最准确、最可靠的决策树。在IEEE新英格兰39总线测试系统上对该策略进行了验证,并通过仿真研究验证了该策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A White-Box Decision Tree-Based Preventive Strategy for Real-Time Islanding Detection Using Wide-Area Phasor Measurement
With the ever-increasing energy demand and enormous development of generation capacity, modern bulk power systems are mostly pushed to operate with narrower security boundaries. Therefore, timely and reliable assessment of power system security is an inevitable necessity to prevent widespread blackouts and cascading outages. In this paper, a new white-box decision tree-based preventive strategy is presented to evaluate and enhance the power system dynamic security versus the credible N-K contingencies originating from transient instabilities. As well, a competent operating measure is expertly defined to detect and identify the islanding and non-islanding conditions with the aid of a wide-area phasor measurement system. The newly developed strategy is outlined by a three-level simulation with the aim of guaranteeing the power system dynamic security. In the first-level, six hundred islanding and non-islanding scenarios are generated using an enhanced version of the ID3 algorithm, referred to as the C4.5 algorithms. In the second-level, optimal C4.5 decision trees are offline trained based on operating parameters achieved by the reduction error pruning method. In the third level, however, all trained decision trees are rigorously investigated offline and online; and then, the most accurate and reliable decision tree is selected. The newly developed strategy is examined on the IEEE New England 39-bus test system, and its effectiveness is assured by simulation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Development of a Portable High Voltage Variable Pulsed Power Source using Flyback Converter and Rotary Spark Gap from a 12V Battery Outdoor Performance of crystalline silicon PV modules in Bogotá - Colombia Improved Dual Switch Non-Isolated High Gain Boost Converter for DC microgrid Application [Copyright notice] Selective Harmonic Elimination PWM for Cascaded H-bridge Multilevel Inverter with Wide Output Voltage Range Using PSO Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1