基于深度神经网络的混合PLDA鲁棒i向量说话人验证

N. Li, M. Mak, Jen-Tzung Chien
{"title":"基于深度神经网络的混合PLDA鲁棒i向量说话人验证","authors":"N. Li, M. Mak, Jen-Tzung Chien","doi":"10.1109/SLT.2016.7846263","DOIUrl":null,"url":null,"abstract":"In speaker recognition, the mismatch between the enrollment and test utterances due to noise with different signal-to-noise ratios (SNRs) is a great challenge. Based on the observation that noise-level variability causes the i-vectors to form heterogeneous clusters, this paper proposes using an SNR-aware deep neural network (DNN) to guide the training of PLDA mixture models. Specifically, given an i-vector, the SNR posterior probabilities produced by the DNN are used as the posteriors of indicator variables of the mixture model. As a result, the proposed model provides a more reasonable soft division of the i-vector space compared to the conventional mixture of PLDA. During verification, given a test trial, the marginal likelihoods from individual PLDA models are linearly combined by the posterior probabilities of SNR levels computed by the DNN. Experimental results for SNR mismatch tasks based on NIST 2012 SRE suggest that the proposed model is more effective than PLDA and conventional mixture of PLDA for handling heterogeneous corpora.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"516 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep neural network driven mixture of PLDA for robust i-vector speaker verification\",\"authors\":\"N. Li, M. Mak, Jen-Tzung Chien\",\"doi\":\"10.1109/SLT.2016.7846263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In speaker recognition, the mismatch between the enrollment and test utterances due to noise with different signal-to-noise ratios (SNRs) is a great challenge. Based on the observation that noise-level variability causes the i-vectors to form heterogeneous clusters, this paper proposes using an SNR-aware deep neural network (DNN) to guide the training of PLDA mixture models. Specifically, given an i-vector, the SNR posterior probabilities produced by the DNN are used as the posteriors of indicator variables of the mixture model. As a result, the proposed model provides a more reasonable soft division of the i-vector space compared to the conventional mixture of PLDA. During verification, given a test trial, the marginal likelihoods from individual PLDA models are linearly combined by the posterior probabilities of SNR levels computed by the DNN. Experimental results for SNR mismatch tasks based on NIST 2012 SRE suggest that the proposed model is more effective than PLDA and conventional mixture of PLDA for handling heterogeneous corpora.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"516 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在说话人识别中,由于不同信噪比的噪声导致的入组话语与测试话语不匹配是一个很大的挑战。基于观察到噪声级变异性会导致i向量形成异质聚类,本文提出使用感知信噪比的深度神经网络(DNN)来指导PLDA混合模型的训练。具体来说,给定一个i向量,DNN产生的信噪比后验概率被用作混合模型指标变量的后验。因此,与传统的混合PLDA相比,该模型提供了更合理的i向量空间软划分。在验证过程中,给定一个测试试验,单个PLDA模型的边际似然与DNN计算的信噪比水平的后验概率线性组合。基于NIST 2012 SRE的信噪比错配任务实验结果表明,该模型比PLDA和传统混合PLDA处理异构语料库更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep neural network driven mixture of PLDA for robust i-vector speaker verification
In speaker recognition, the mismatch between the enrollment and test utterances due to noise with different signal-to-noise ratios (SNRs) is a great challenge. Based on the observation that noise-level variability causes the i-vectors to form heterogeneous clusters, this paper proposes using an SNR-aware deep neural network (DNN) to guide the training of PLDA mixture models. Specifically, given an i-vector, the SNR posterior probabilities produced by the DNN are used as the posteriors of indicator variables of the mixture model. As a result, the proposed model provides a more reasonable soft division of the i-vector space compared to the conventional mixture of PLDA. During verification, given a test trial, the marginal likelihoods from individual PLDA models are linearly combined by the posterior probabilities of SNR levels computed by the DNN. Experimental results for SNR mismatch tasks based on NIST 2012 SRE suggest that the proposed model is more effective than PLDA and conventional mixture of PLDA for handling heterogeneous corpora.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1