数据聚类的年龄粒子

Satchidananda Dehuri, Ashish Ghosh, R. Mall
{"title":"数据聚类的年龄粒子","authors":"Satchidananda Dehuri, Ashish Ghosh, R. Mall","doi":"10.1109/ICIT.2006.69","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel particle swarm optimisation (PSO) algorithm using the concept of age of particles. Effective fitness of a particle depends both on its functional value and age. Age of a newly generated particle is taken as zero, and in every iteration age of each individual is increased by one. In this paper, a trapezoidal aging function is considered. The model aims to emulate natural swarm system in a more natural way. The effectiveness of this concept is demonstrated by cluster analysis. Results show that the model provides enhanced performance and maintains more diversity in the swarm and thereby allows the particles to be robust to trace the changing environment.","PeriodicalId":161120,"journal":{"name":"9th International Conference on Information Technology (ICIT'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Particles with Age for Data Clustering\",\"authors\":\"Satchidananda Dehuri, Ashish Ghosh, R. Mall\",\"doi\":\"10.1109/ICIT.2006.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel particle swarm optimisation (PSO) algorithm using the concept of age of particles. Effective fitness of a particle depends both on its functional value and age. Age of a newly generated particle is taken as zero, and in every iteration age of each individual is increased by one. In this paper, a trapezoidal aging function is considered. The model aims to emulate natural swarm system in a more natural way. The effectiveness of this concept is demonstrated by cluster analysis. Results show that the model provides enhanced performance and maintains more diversity in the swarm and thereby allows the particles to be robust to trace the changing environment.\",\"PeriodicalId\":161120,\"journal\":{\"name\":\"9th International Conference on Information Technology (ICIT'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Information Technology (ICIT'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2006.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Information Technology (ICIT'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2006.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于粒子年龄的粒子群优化算法。粒子的有效适合度取决于它的功能值和年龄。将新生成的粒子的年龄取为0,在每一次迭代中,每个个体的年龄增加1。本文考虑了一个梯形老化函数。该模型旨在以更自然的方式模拟自然群体系统。聚类分析证明了这一概念的有效性。结果表明,该模型具有更好的性能,并在群体中保持了更多的多样性,从而使粒子具有鲁棒性,可以跟踪变化的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particles with Age for Data Clustering
This paper proposes a novel particle swarm optimisation (PSO) algorithm using the concept of age of particles. Effective fitness of a particle depends both on its functional value and age. Age of a newly generated particle is taken as zero, and in every iteration age of each individual is increased by one. In this paper, a trapezoidal aging function is considered. The model aims to emulate natural swarm system in a more natural way. The effectiveness of this concept is demonstrated by cluster analysis. Results show that the model provides enhanced performance and maintains more diversity in the swarm and thereby allows the particles to be robust to trace the changing environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Novel Reversible Carry Look-Ahead BCD Subtractor Design of a Framework for Handling Security Issues in Grids A Programmable Parallel Structure to perform Galois Field Exponentiation Voice Conversion by Prosody and Vocal Tract Modification Use of Instance Typicality for Efficient Detection of Outliers with Neural Network Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1