基于特征袋(BoF)的新型COVID-19检测框架

Sonain Jamil, Muhammad Sohail Abbas, Muhammad Ahsan, Muhammad Tauseef Ejaz
{"title":"基于特征袋(BoF)的新型COVID-19检测框架","authors":"Sonain Jamil, Muhammad Sohail Abbas, Muhammad Ahsan, Muhammad Tauseef Ejaz","doi":"10.1109/ICOSST53930.2021.9683948","DOIUrl":null,"url":null,"abstract":"Novel coronavirus (COVID-19) is a hazardous virus. Initially, detected in China and spread worldwide, causing several deaths. Over time, there have been several variants of COVID-19, we have grouped all of them into two major categories. The categories are known to be variants of concern and variants of interest. Talking about the first of these two, it is very dangerous, and we need a system that can not only detect the disease but also classify it without physical interaction with a patient suffering from COVID-19. This paper proposes a Bag-of-Features (BoF) based deep learning framework that can detect as well as classify COVID-19 and all of its variants as well. Initially, the spatial features are extracted with deep convolutional models, while hand-crafted features have been extracted from several hand-crafted descriptors. Both spatial and hand-crafted features are combined to make a feature vector. This feature vector feeds the classifier to classify different variants in respective categories. The experimental results show that the proposed methodology outperforms all the existing methods.","PeriodicalId":325357,"journal":{"name":"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bag-of-Features (BoF) Based Novel Framework for the Detection of COVID-19\",\"authors\":\"Sonain Jamil, Muhammad Sohail Abbas, Muhammad Ahsan, Muhammad Tauseef Ejaz\",\"doi\":\"10.1109/ICOSST53930.2021.9683948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel coronavirus (COVID-19) is a hazardous virus. Initially, detected in China and spread worldwide, causing several deaths. Over time, there have been several variants of COVID-19, we have grouped all of them into two major categories. The categories are known to be variants of concern and variants of interest. Talking about the first of these two, it is very dangerous, and we need a system that can not only detect the disease but also classify it without physical interaction with a patient suffering from COVID-19. This paper proposes a Bag-of-Features (BoF) based deep learning framework that can detect as well as classify COVID-19 and all of its variants as well. Initially, the spatial features are extracted with deep convolutional models, while hand-crafted features have been extracted from several hand-crafted descriptors. Both spatial and hand-crafted features are combined to make a feature vector. This feature vector feeds the classifier to classify different variants in respective categories. The experimental results show that the proposed methodology outperforms all the existing methods.\",\"PeriodicalId\":325357,\"journal\":{\"name\":\"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSST53930.2021.9683948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Open Source Systems and Technologies (ICOSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSST53930.2021.9683948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新型冠状病毒(COVID-19)是一种危险病毒。最初在中国发现并传播到世界各地,造成数人死亡。随着时间的推移,COVID-19出现了几种变体,我们将它们归为两大类。众所周知,这些类别是关注的变体和兴趣的变体。谈到这两者中的第一个,它非常危险,我们需要一个系统,不仅可以检测疾病,还可以在不与COVID-19患者进行身体接触的情况下对其进行分类。本文提出了一种基于特征袋(BoF)的深度学习框架,该框架可以检测和分类COVID-19及其所有变体。最初,空间特征是用深度卷积模型提取的,而手工特征是从几个手工描述符中提取的。空间特征和手工特征结合起来构成特征向量。该特征向量为分类器提供信息,以对各自类别中的不同变体进行分类。实验结果表明,该方法优于现有的各种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bag-of-Features (BoF) Based Novel Framework for the Detection of COVID-19
Novel coronavirus (COVID-19) is a hazardous virus. Initially, detected in China and spread worldwide, causing several deaths. Over time, there have been several variants of COVID-19, we have grouped all of them into two major categories. The categories are known to be variants of concern and variants of interest. Talking about the first of these two, it is very dangerous, and we need a system that can not only detect the disease but also classify it without physical interaction with a patient suffering from COVID-19. This paper proposes a Bag-of-Features (BoF) based deep learning framework that can detect as well as classify COVID-19 and all of its variants as well. Initially, the spatial features are extracted with deep convolutional models, while hand-crafted features have been extracted from several hand-crafted descriptors. Both spatial and hand-crafted features are combined to make a feature vector. This feature vector feeds the classifier to classify different variants in respective categories. The experimental results show that the proposed methodology outperforms all the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Question Answer Re-Ranking using Syntactic Relationship IoT based Smart Fan Dimmer with suppressed Humming Sound and Nonlinear Effect of Inverter Detection of Freezing of Gait in Parkinson's Disease by Squeeze-and-Excitation Convolutional Neural Network with Wearable Sensors A Bag-of-Features (BoF) Based Novel Framework for the Detection of COVID-19 An efficient rating system for players based on their position statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1