通过可靠的支持向量机实现可靠的学习

Enrico Ferrari, M. Muselli
{"title":"通过可靠的支持向量机实现可靠的学习","authors":"Enrico Ferrari, M. Muselli","doi":"10.1109/FOCI.2011.5949475","DOIUrl":null,"url":null,"abstract":"Starting from the theoretical framework of reliable learning, a new classification algorithm capable of using prior information on the reliability of a training set has been developed. It consists in a straightforward modification of the standard technique adopted in the conventional Support Vector Machine (SVM) approach: the knowledge about reliability, encoded by adding a binary label to each example of the training set (asserting if the classification is reliable or not), is employed to properly modify the constrained optimization problem for the generalized optimal hyperplane. Hence, the name Reliable Support Vector Machines (RSVM) is adopted for models built according to the proposed algorithm. Specific tests have been carried out to verify how RSVM performs in comparison with standard SVM, showing a significant improvement in classification accuracy.","PeriodicalId":106271,"journal":{"name":"2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementing reliable learning through Reliable Support Vector Machines\",\"authors\":\"Enrico Ferrari, M. Muselli\",\"doi\":\"10.1109/FOCI.2011.5949475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from the theoretical framework of reliable learning, a new classification algorithm capable of using prior information on the reliability of a training set has been developed. It consists in a straightforward modification of the standard technique adopted in the conventional Support Vector Machine (SVM) approach: the knowledge about reliability, encoded by adding a binary label to each example of the training set (asserting if the classification is reliable or not), is employed to properly modify the constrained optimization problem for the generalized optimal hyperplane. Hence, the name Reliable Support Vector Machines (RSVM) is adopted for models built according to the proposed algorithm. Specific tests have been carried out to verify how RSVM performs in comparison with standard SVM, showing a significant improvement in classification accuracy.\",\"PeriodicalId\":106271,\"journal\":{\"name\":\"2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCI.2011.5949475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Foundations of Computational Intelligence (FOCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCI.2011.5949475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从可靠学习的理论框架出发,提出了一种利用训练集可靠性先验信息的分类算法。它是对传统支持向量机(SVM)方法中采用的标准技术的直接修改:通过在训练集的每个示例中添加二进制标签(断言分类是否可靠)来编码有关可靠性的知识,以适当地修改广义最优超平面的约束优化问题。因此,根据该算法建立的模型采用可靠支持向量机(RSVM)。通过具体的测试验证了RSVM与标准SVM的性能,在分类精度上有了明显的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementing reliable learning through Reliable Support Vector Machines
Starting from the theoretical framework of reliable learning, a new classification algorithm capable of using prior information on the reliability of a training set has been developed. It consists in a straightforward modification of the standard technique adopted in the conventional Support Vector Machine (SVM) approach: the knowledge about reliability, encoded by adding a binary label to each example of the training set (asserting if the classification is reliable or not), is employed to properly modify the constrained optimization problem for the generalized optimal hyperplane. Hence, the name Reliable Support Vector Machines (RSVM) is adopted for models built according to the proposed algorithm. Specific tests have been carried out to verify how RSVM performs in comparison with standard SVM, showing a significant improvement in classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test error bounds for classifiers: A survey of old and new results Bistable memory and binary counters in spiking neural network Decision making with probabilities, weighted averages and OWA operators Fuzzy rule based networks On the use of fuzzy stable models for inconsistent classical logic programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1