{"title":"收缩序列比对的差异评分","authors":"A. E. D. L. Serna","doi":"10.1109/BIBE.2007.4375716","DOIUrl":null,"url":null,"abstract":"Systolic implementations of dynamic programming solutions that utilize a similarity matrix can achieve appreciable performance with both course-and fine-grain parallelization. A limitation of systolic array design is that score routing between array elements, array I/O bandwidth, and score memory capacity are dependent upon the length of the sequence that can be processed. A novel approach of differential scoring is presented that exploits adjacency and decouples the complexity of score routing and systolic array bandwidth to sequence length. Instead, these design parameters become a function of algorithm sensitivity. As a consequence, the Simile implementation of differential scoring for sequence alignment has reduced score routing, I/O bandwidth, and score storage by 82% for sequences of length 10 and has significantly improved gate count, clock rate, and power utilization per systolic processing element.","PeriodicalId":147263,"journal":{"name":"International Conferences on Biological Information and Biomedical Engineering","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Differential Scoring for Systolic Sequence Alignment\",\"authors\":\"A. E. D. L. Serna\",\"doi\":\"10.1109/BIBE.2007.4375716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systolic implementations of dynamic programming solutions that utilize a similarity matrix can achieve appreciable performance with both course-and fine-grain parallelization. A limitation of systolic array design is that score routing between array elements, array I/O bandwidth, and score memory capacity are dependent upon the length of the sequence that can be processed. A novel approach of differential scoring is presented that exploits adjacency and decouples the complexity of score routing and systolic array bandwidth to sequence length. Instead, these design parameters become a function of algorithm sensitivity. As a consequence, the Simile implementation of differential scoring for sequence alignment has reduced score routing, I/O bandwidth, and score storage by 82% for sequences of length 10 and has significantly improved gate count, clock rate, and power utilization per systolic processing element.\",\"PeriodicalId\":147263,\"journal\":{\"name\":\"International Conferences on Biological Information and Biomedical Engineering\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conferences on Biological Information and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2007.4375716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conferences on Biological Information and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2007.4375716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differential Scoring for Systolic Sequence Alignment
Systolic implementations of dynamic programming solutions that utilize a similarity matrix can achieve appreciable performance with both course-and fine-grain parallelization. A limitation of systolic array design is that score routing between array elements, array I/O bandwidth, and score memory capacity are dependent upon the length of the sequence that can be processed. A novel approach of differential scoring is presented that exploits adjacency and decouples the complexity of score routing and systolic array bandwidth to sequence length. Instead, these design parameters become a function of algorithm sensitivity. As a consequence, the Simile implementation of differential scoring for sequence alignment has reduced score routing, I/O bandwidth, and score storage by 82% for sequences of length 10 and has significantly improved gate count, clock rate, and power utilization per systolic processing element.