Owen Macindoe, W. Richards
{"title":"Comparing networks using their fine structure","authors":"Owen Macindoe, W. Richards","doi":"10.1504/IJSCCPS.2011.043605","DOIUrl":null,"url":null,"abstract":"We introduce a novel technique for characterising networks using the structure of their sub-graphs, which we call the network’s fine structure. To judge the similarities between networks we use the earth mover’s distance between the distributions of features of their constituent sub-graphs. This technique is an abstraction of graph edit-distance. Given these similarity measures we explore their use in hierarchical clustering on several networks derived from a variety of sources including social interaction data.","PeriodicalId":220482,"journal":{"name":"Int. J. Soc. Comput. Cyber Phys. Syst.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Soc. Comput. Cyber Phys. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSCCPS.2011.043605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们引入了一种新的技术,利用子图的结构来表征网络,我们称之为网络的精细结构。为了判断网络之间的相似性,我们使用了它们组成子图的特征分布之间的距离。这种技术是图形编辑距离的抽象。鉴于这些相似性度量,我们探索了它们在来自各种来源(包括社会互动数据)的几个网络上的分层聚类中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing networks using their fine structure
We introduce a novel technique for characterising networks using the structure of their sub-graphs, which we call the network’s fine structure. To judge the similarities between networks we use the earth mover’s distance between the distributions of features of their constituent sub-graphs. This technique is an abstraction of graph edit-distance. Given these similarity measures we explore their use in hierarchical clustering on several networks derived from a variety of sources including social interaction data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting malicious users in the social networks using machine learning approach Privacy-preserving targeted online advertising Cyber-squatting: a cyber crime more than an unethical act The troika of artificial intelligence, emotional intelligence and customer intelligence Implementation of an efficient and intelligent Indian maritime borderline alert system using IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1