航天用固体火箭发动机机壳硬件设计与结构分析

B. Dineshkumar, B. ShishiraNayana, D. ShravyaShree
{"title":"航天用固体火箭发动机机壳硬件设计与结构分析","authors":"B. Dineshkumar, B. ShishiraNayana, D. ShravyaShree","doi":"10.4172/2168-9792.1000166","DOIUrl":null,"url":null,"abstract":"Rocket motors are widely used to generate thrust or impulsive force to impart a desired velocity to flight vehicle to transport its payload to the intended destination. The working principle of Rocket motor is mainly Newton’s 2nd and 3rd laws. Rocket motors are non-air breathing propulsion class i.e., won’t require oxygen from the atmosphere for combustion of the fuel which is stored in the rocket motor. During the operating conditions of the motor hardware, it will be subjected to high temperatures and pressure loads. Structural and thermal design has to carried out for a given input parameters and analysis to be carried out to check the stress levels and temperatures on the hardware. The present paper deals with structural design of motor hardware. The main input parameters considered are the maximum operating pressure and maximum diameter of the Motor hardware. The material properties considered are up to 100°C. Structural analysis and fracture analysis are to carry out after the design of each component of the rocket motor hardware. For design, the motor hardware is considered as a pressure vessel. To compute parameters like thickness some initial assumptions were made. 2D drawing is developed using Auto Cad software and structural analysis is carried out in ANSYS. This software employs finite element analysis techniques to generate the solution. Hence the displacement magnitude, von mises stress and strain developed within the motor is pictorially visualized. Fracture analysis is also carried out on the material.","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design and Structural Analysis of Solid Rocket Motor Casing Hardwareused in Aerospace Applications\",\"authors\":\"B. Dineshkumar, B. ShishiraNayana, D. ShravyaShree\",\"doi\":\"10.4172/2168-9792.1000166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rocket motors are widely used to generate thrust or impulsive force to impart a desired velocity to flight vehicle to transport its payload to the intended destination. The working principle of Rocket motor is mainly Newton’s 2nd and 3rd laws. Rocket motors are non-air breathing propulsion class i.e., won’t require oxygen from the atmosphere for combustion of the fuel which is stored in the rocket motor. During the operating conditions of the motor hardware, it will be subjected to high temperatures and pressure loads. Structural and thermal design has to carried out for a given input parameters and analysis to be carried out to check the stress levels and temperatures on the hardware. The present paper deals with structural design of motor hardware. The main input parameters considered are the maximum operating pressure and maximum diameter of the Motor hardware. The material properties considered are up to 100°C. Structural analysis and fracture analysis are to carry out after the design of each component of the rocket motor hardware. For design, the motor hardware is considered as a pressure vessel. To compute parameters like thickness some initial assumptions were made. 2D drawing is developed using Auto Cad software and structural analysis is carried out in ANSYS. This software employs finite element analysis techniques to generate the solution. Hence the displacement magnitude, von mises stress and strain developed within the motor is pictorially visualized. Fracture analysis is also carried out on the material.\",\"PeriodicalId\":356774,\"journal\":{\"name\":\"Journal of Aeronautics and Aerospace Engineering\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aeronautics and Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9792.1000166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

火箭发动机被广泛用于产生推力或冲力,以赋予飞行器所需的速度,以将其有效载荷运送到预定的目的地。火箭发动机的工作原理主要是牛顿第二和第三定律。火箭发动机是非空气呼吸推进级,即不需要大气中的氧气来燃烧储存在火箭发动机中的燃料。在电机硬件运行的条件下,它将受到高温和压力负载。必须针对给定的输入参数进行结构和热设计,并进行分析以检查硬件上的应力水平和温度。本文论述了电机硬件的结构设计。考虑的主要输入参数是电机硬件的最大操作压力和最大直径。考虑的材料性能最高可达100°C。在对火箭发动机硬件各部件进行设计后,进行结构分析和断裂分析。在设计时,电机硬件被认为是一个压力容器。为了计算厚度等参数,进行了一些初始假设。利用Auto Cad软件绘制二维图纸,在ANSYS中进行结构分析。该软件采用有限元分析技术生成解。因此,位移幅度,冯米塞斯应力和应变发展在电机图形可视化。对材料进行了断裂分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Structural Analysis of Solid Rocket Motor Casing Hardwareused in Aerospace Applications
Rocket motors are widely used to generate thrust or impulsive force to impart a desired velocity to flight vehicle to transport its payload to the intended destination. The working principle of Rocket motor is mainly Newton’s 2nd and 3rd laws. Rocket motors are non-air breathing propulsion class i.e., won’t require oxygen from the atmosphere for combustion of the fuel which is stored in the rocket motor. During the operating conditions of the motor hardware, it will be subjected to high temperatures and pressure loads. Structural and thermal design has to carried out for a given input parameters and analysis to be carried out to check the stress levels and temperatures on the hardware. The present paper deals with structural design of motor hardware. The main input parameters considered are the maximum operating pressure and maximum diameter of the Motor hardware. The material properties considered are up to 100°C. Structural analysis and fracture analysis are to carry out after the design of each component of the rocket motor hardware. For design, the motor hardware is considered as a pressure vessel. To compute parameters like thickness some initial assumptions were made. 2D drawing is developed using Auto Cad software and structural analysis is carried out in ANSYS. This software employs finite element analysis techniques to generate the solution. Hence the displacement magnitude, von mises stress and strain developed within the motor is pictorially visualized. Fracture analysis is also carried out on the material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical Behavior of a Fuselage Stiffened Carbon-Epoxy Panel under Debonding Load On the Modeling of Light Aircraft Landing Gears Various aspects of situation awareness with respect to human-machine-interaction while using optoavionic cockpit instrumentation in aircraft Autopilot Design of Unmanned Aerial Vehicle A New Methodology for Aerodynamic Design and Analysis of a Small Scale Blended Wing Body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1