毫米波副链路通信中基于竞争的信道接入性能评价

Alessandro Brighenti, Matteo Drago, Tommaso Zugno, M. Zorzi, P. Casari
{"title":"毫米波副链路通信中基于竞争的信道接入性能评价","authors":"Alessandro Brighenti, Matteo Drago, Tommaso Zugno, M. Zorzi, P. Casari","doi":"10.1109/CAMAD55695.2022.9966910","DOIUrl":null,"url":null,"abstract":"One of the main challenges of future automotive networks is the need to make vehicles aware of their surroundings. Each car will be required to collect data about the environment through dedicated sensors, and share it with its neighbors. Communicating in the millimeter wave spectrum could provide a solution for addressing such requirements. The huge amount of bandwidth available at millimeter wave frequencies, along with an optimized use of the physical resources, could provide massive data rates and low latency capabilities and enable the dissemination of real-time information. In this paper, we focus on platoons of vehicles that share LiDAR pointclouds with their platoon leader, and we use MilliCar, the ns-3 module based on the 3GPP NR V2X specifications, to provide an end-to-end performance evaluation. In particular, we study the trade-offs between using a semi-persistent resource allocation of time slots, with respect to a contention-based approach. By comparing different scheduling alternatives and different clear channel assessment thresholds, we show that coordination among different platoons can mitigate the inter-platoon interference and increase the reliability, whereas a contention-based approach achieves lower transmission delay.","PeriodicalId":166029,"journal":{"name":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","volume":"521 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Contention-based Channel Access for mmWave Sidelink Communications\",\"authors\":\"Alessandro Brighenti, Matteo Drago, Tommaso Zugno, M. Zorzi, P. Casari\",\"doi\":\"10.1109/CAMAD55695.2022.9966910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges of future automotive networks is the need to make vehicles aware of their surroundings. Each car will be required to collect data about the environment through dedicated sensors, and share it with its neighbors. Communicating in the millimeter wave spectrum could provide a solution for addressing such requirements. The huge amount of bandwidth available at millimeter wave frequencies, along with an optimized use of the physical resources, could provide massive data rates and low latency capabilities and enable the dissemination of real-time information. In this paper, we focus on platoons of vehicles that share LiDAR pointclouds with their platoon leader, and we use MilliCar, the ns-3 module based on the 3GPP NR V2X specifications, to provide an end-to-end performance evaluation. In particular, we study the trade-offs between using a semi-persistent resource allocation of time slots, with respect to a contention-based approach. By comparing different scheduling alternatives and different clear channel assessment thresholds, we show that coordination among different platoons can mitigate the inter-platoon interference and increase the reliability, whereas a contention-based approach achieves lower transmission delay.\",\"PeriodicalId\":166029,\"journal\":{\"name\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"volume\":\"521 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAD55695.2022.9966910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD55695.2022.9966910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

未来汽车网络的主要挑战之一是需要让车辆了解周围环境。每辆车都需要通过专用传感器收集有关环境的数据,并与相邻车辆共享。在毫米波频谱中通信可以为满足这些需求提供解决方案。毫米波频率下的大量可用带宽,以及对物理资源的优化利用,可以提供巨大的数据速率和低延迟能力,并实现实时信息的传播。在本文中,我们将重点放在与排长共享激光雷达点云的车辆排上,并使用基于3GPP NR V2X规范的ns-3模块MilliCar来提供端到端的性能评估。特别是,我们研究了使用半持久的时隙资源分配与基于争用的方法之间的权衡。通过比较不同的调度方案和不同的清晰信道评估阈值,我们发现不同排之间的协调可以减少排间干扰,提高可靠性,而基于竞争的方法可以降低传输延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation of Contention-based Channel Access for mmWave Sidelink Communications
One of the main challenges of future automotive networks is the need to make vehicles aware of their surroundings. Each car will be required to collect data about the environment through dedicated sensors, and share it with its neighbors. Communicating in the millimeter wave spectrum could provide a solution for addressing such requirements. The huge amount of bandwidth available at millimeter wave frequencies, along with an optimized use of the physical resources, could provide massive data rates and low latency capabilities and enable the dissemination of real-time information. In this paper, we focus on platoons of vehicles that share LiDAR pointclouds with their platoon leader, and we use MilliCar, the ns-3 module based on the 3GPP NR V2X specifications, to provide an end-to-end performance evaluation. In particular, we study the trade-offs between using a semi-persistent resource allocation of time slots, with respect to a contention-based approach. By comparing different scheduling alternatives and different clear channel assessment thresholds, we show that coordination among different platoons can mitigate the inter-platoon interference and increase the reliability, whereas a contention-based approach achieves lower transmission delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Network Intrusion Detection Systems for Outlier Detection Secure Two-Way Communications Between UAVs and Control Center in IoV 5G Communication User Mobility Dataset for 5G Networks Based on GPS Geolocation Risk Estimation for a Secure & Usable User Authentication Mechanism for Mobile Passenger ID Devices Hybrid SIC with Residual Error Factor in Wireless Powered Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1