搜索旧新闻:国家收藏中的用户兴趣和行为

Tessel Bogaard, L. Hollink, J. Wielemaker, L. Hardman, J. V. Ossenbruggen
{"title":"搜索旧新闻:国家收藏中的用户兴趣和行为","authors":"Tessel Bogaard, L. Hollink, J. Wielemaker, L. Hardman, J. V. Ossenbruggen","doi":"10.1145/3295750.3298925","DOIUrl":null,"url":null,"abstract":"Modeling user interests helps to improve system support or refine recommendations in Interactive Information Retrieval. The aim of this study is to identify user interests in different parts of an online collection and investigate the related search behavior. To do this, we propose to use the metadata of selected facets and clicked documents as features for clustering sessions identified in user logs. We evaluate the session clusters by measuring their stability over a six-month period. We apply our approach to data from the National Library of the Netherlands, a typical digital library with a richly annotated historical newspaper collection and a faceted search interface. Our results show that users interested in specific parts of the collection use different search techniques. We demonstrate that a metadata-based clustering helps to reveal and understand user interests in terms of the collection, and how search behavior is related to specific parts within the collection.","PeriodicalId":187771,"journal":{"name":"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Searching for Old News: User Interests and Behavior within a National Collection\",\"authors\":\"Tessel Bogaard, L. Hollink, J. Wielemaker, L. Hardman, J. V. Ossenbruggen\",\"doi\":\"10.1145/3295750.3298925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling user interests helps to improve system support or refine recommendations in Interactive Information Retrieval. The aim of this study is to identify user interests in different parts of an online collection and investigate the related search behavior. To do this, we propose to use the metadata of selected facets and clicked documents as features for clustering sessions identified in user logs. We evaluate the session clusters by measuring their stability over a six-month period. We apply our approach to data from the National Library of the Netherlands, a typical digital library with a richly annotated historical newspaper collection and a faceted search interface. Our results show that users interested in specific parts of the collection use different search techniques. We demonstrate that a metadata-based clustering helps to reveal and understand user interests in terms of the collection, and how search behavior is related to specific parts within the collection.\",\"PeriodicalId\":187771,\"journal\":{\"name\":\"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3295750.3298925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3295750.3298925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

对用户兴趣进行建模有助于改进交互式信息检索中的系统支持或改进推荐。本研究的目的是确定用户对在线收藏的不同部分的兴趣,并调查相关的搜索行为。为此,我们建议使用所选facet的元数据和单击的文档作为用户日志中识别的集群会话的特征。我们通过衡量六个月期间的稳定性来评估会话集群。我们将我们的方法应用于来自荷兰国家图书馆的数据,这是一个典型的数字图书馆,拥有丰富的注释历史报纸收藏和分面搜索界面。我们的结果表明,对集合的特定部分感兴趣的用户使用不同的搜索技术。我们展示了基于元数据的聚类有助于揭示和理解用户对集合的兴趣,以及搜索行为如何与集合中的特定部分相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Searching for Old News: User Interests and Behavior within a National Collection
Modeling user interests helps to improve system support or refine recommendations in Interactive Information Retrieval. The aim of this study is to identify user interests in different parts of an online collection and investigate the related search behavior. To do this, we propose to use the metadata of selected facets and clicked documents as features for clustering sessions identified in user logs. We evaluate the session clusters by measuring their stability over a six-month period. We apply our approach to data from the National Library of the Netherlands, a typical digital library with a richly annotated historical newspaper collection and a faceted search interface. Our results show that users interested in specific parts of the collection use different search techniques. We demonstrate that a metadata-based clustering helps to reveal and understand user interests in terms of the collection, and how search behavior is related to specific parts within the collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assisting Health Consumers While Searching the Web through Medical Annotations Do Metrics Matter? Understanding Context for Tasks and Activities NotifyMeHere: Intelligent Notification Delivery in Multi-Device Environments Computational Surprise, Perceptual Surprise, and Personal Background in Text Understanding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1