{"title":"SnO2固体物理中的群理论方法","authors":"Eunsung Jekal, Sungjin Park","doi":"10.15406/mseij.2022.06.00187","DOIUrl":null,"url":null,"abstract":"Oxide semiconductor SnO2 shows excellent photoelectronic properties and sensitivities of gases. It is known that their special properties are originated by a stable large band-gap. In nano-SnO2, the above properties have been extensively explored, and nano-SnO2 will find wide applications in microelectronics, photoelectronics, sensor and compound function ceramics. According to our study using group theory, a single SnO2 crystal with rutile-type structure shows four Raman active modes, A 1g, B 1g, B 2g and E g. The additional A 2μ and E μ modes correspond to transverse-optical (TO) and longitudinal-optical (LO) vibrations. Moreover, we applied application of perturbation theory, consequently, the spectrum of commercial SnO2 sample showed the Raman bands in accordance with the theory.","PeriodicalId":435904,"journal":{"name":"Material Science & Engineering International Journal","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group theoretical methods in solid state Physics of SnO2\",\"authors\":\"Eunsung Jekal, Sungjin Park\",\"doi\":\"10.15406/mseij.2022.06.00187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxide semiconductor SnO2 shows excellent photoelectronic properties and sensitivities of gases. It is known that their special properties are originated by a stable large band-gap. In nano-SnO2, the above properties have been extensively explored, and nano-SnO2 will find wide applications in microelectronics, photoelectronics, sensor and compound function ceramics. According to our study using group theory, a single SnO2 crystal with rutile-type structure shows four Raman active modes, A 1g, B 1g, B 2g and E g. The additional A 2μ and E μ modes correspond to transverse-optical (TO) and longitudinal-optical (LO) vibrations. Moreover, we applied application of perturbation theory, consequently, the spectrum of commercial SnO2 sample showed the Raman bands in accordance with the theory.\",\"PeriodicalId\":435904,\"journal\":{\"name\":\"Material Science & Engineering International Journal\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science & Engineering International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/mseij.2022.06.00187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science & Engineering International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/mseij.2022.06.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Group theoretical methods in solid state Physics of SnO2
Oxide semiconductor SnO2 shows excellent photoelectronic properties and sensitivities of gases. It is known that their special properties are originated by a stable large band-gap. In nano-SnO2, the above properties have been extensively explored, and nano-SnO2 will find wide applications in microelectronics, photoelectronics, sensor and compound function ceramics. According to our study using group theory, a single SnO2 crystal with rutile-type structure shows four Raman active modes, A 1g, B 1g, B 2g and E g. The additional A 2μ and E μ modes correspond to transverse-optical (TO) and longitudinal-optical (LO) vibrations. Moreover, we applied application of perturbation theory, consequently, the spectrum of commercial SnO2 sample showed the Raman bands in accordance with the theory.