半连续隐马尔可夫模型的最优线性特征变换

E. Schukat-Talamazzini, J. Hornegger, H. Niemann
{"title":"半连续隐马尔可夫模型的最优线性特征变换","authors":"E. Schukat-Talamazzini, J. Hornegger, H. Niemann","doi":"10.1109/ICASSP.1995.479598","DOIUrl":null,"url":null,"abstract":"Linear discriminant or Karhunen-Loeve transforms are established techniques for mapping features into a lower dimensional subspace. This paper introduces a uniform statistical framework, where the computation of the optimal feature reduction is formalized as a maximum-likelihood estimation problem. The experimental evaluation of this suggested extension of linear selection methods shows a slight improvement of the recognition accuracy.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Optimal linear feature transformations for semi-continuous hidden Markov models\",\"authors\":\"E. Schukat-Talamazzini, J. Hornegger, H. Niemann\",\"doi\":\"10.1109/ICASSP.1995.479598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear discriminant or Karhunen-Loeve transforms are established techniques for mapping features into a lower dimensional subspace. This paper introduces a uniform statistical framework, where the computation of the optimal feature reduction is formalized as a maximum-likelihood estimation problem. The experimental evaluation of this suggested extension of linear selection methods shows a slight improvement of the recognition accuracy.\",\"PeriodicalId\":300119,\"journal\":{\"name\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1995.479598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

线性判别变换或Karhunen-Loeve变换是将特征映射到低维子空间的成熟技术。本文引入了一个统一的统计框架,其中最优特征约简的计算形式化为最大似然估计问题。对这种线性选择方法的扩展进行了实验评估,结果表明识别精度略有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal linear feature transformations for semi-continuous hidden Markov models
Linear discriminant or Karhunen-Loeve transforms are established techniques for mapping features into a lower dimensional subspace. This paper introduces a uniform statistical framework, where the computation of the optimal feature reduction is formalized as a maximum-likelihood estimation problem. The experimental evaluation of this suggested extension of linear selection methods shows a slight improvement of the recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language identification with phonological and lexical models Computationally efficient wavelet packet coding of wide-band stereo audio signals Signaling techniques using solitons Blind source detection and separation using second order non-stationarity On blind channel identification for impulsive signal environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1