脉冲耦合神经网络对图像时间序列的FPGA实现

Xinzhe Zang, Zhenbin Gao, Mengyuan Li, Xia Wang
{"title":"脉冲耦合神经网络对图像时间序列的FPGA实现","authors":"Xinzhe Zang, Zhenbin Gao, Mengyuan Li, Xia Wang","doi":"10.1145/3277453.3277483","DOIUrl":null,"url":null,"abstract":"Pulse Coupled Neural Network (PCNN) is biologically inspired neural networks, which has a good application in image processing, such as segmentation, enhancement, recognition, edge detection and so on. This paper presents a general VHDL modeling of PCNN, that is targeted for FPGA implementation, and can also be used with advantage for ASIC. First, the basic PCNN theory model is analyzed; and then the detail designed of each sub-module of the hardware is given; at last, the VHDL model is proved by comparing the time series output from FPGA simulation and that from theoretical calculation of the same image. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications.","PeriodicalId":186835,"journal":{"name":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA Implementation of Pulse Coupled Neural Network on for Time Series of an Image\",\"authors\":\"Xinzhe Zang, Zhenbin Gao, Mengyuan Li, Xia Wang\",\"doi\":\"10.1145/3277453.3277483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulse Coupled Neural Network (PCNN) is biologically inspired neural networks, which has a good application in image processing, such as segmentation, enhancement, recognition, edge detection and so on. This paper presents a general VHDL modeling of PCNN, that is targeted for FPGA implementation, and can also be used with advantage for ASIC. First, the basic PCNN theory model is analyzed; and then the detail designed of each sub-module of the hardware is given; at last, the VHDL model is proved by comparing the time series output from FPGA simulation and that from theoretical calculation of the same image. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications.\",\"PeriodicalId\":186835,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3277453.3277483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3277453.3277483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脉冲耦合神经网络(Pulse Coupled Neural Network, PCNN)是一种受生物学启发的神经网络,在图像分割、增强、识别、边缘检测等图像处理领域有很好的应用。本文提出了一种通用的PCNN VHDL建模方法,既可用于FPGA实现,也可用于ASIC。首先,分析了PCNN的基本理论模型;然后给出了硬件各子模块的详细设计;最后,通过对比同一图像的FPGA仿真和理论计算的时间序列输出,对VHDL模型进行了验证。FPGA硬件实现可以被认为是进一步扩展实现的平台,并且很容易扩展到各种应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA Implementation of Pulse Coupled Neural Network on for Time Series of an Image
Pulse Coupled Neural Network (PCNN) is biologically inspired neural networks, which has a good application in image processing, such as segmentation, enhancement, recognition, edge detection and so on. This paper presents a general VHDL modeling of PCNN, that is targeted for FPGA implementation, and can also be used with advantage for ASIC. First, the basic PCNN theory model is analyzed; and then the detail designed of each sub-module of the hardware is given; at last, the VHDL model is proved by comparing the time series output from FPGA simulation and that from theoretical calculation of the same image. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Quality Comprehensive Evaluation of DC Distribution Network Based on Maximizing Deviation and Fuzzy Matter-Element Model Resource Allocation for System Throughput Maximization Based on Mobile Edge Computing Design of Sparse Cosine-Modulated Filter Banks Using BP Neural Network Inrush Current Suppression of High Voltage Shunt Capacitors Based on Precharge Statistical Shape Model Generation Using K-means Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1