可再生能源不确定性对电网动态估计的影响

Muhammad Nadeem, A. Taha, Sebastian A. Nugroho
{"title":"可再生能源不确定性对电网动态估计的影响","authors":"Muhammad Nadeem, A. Taha, Sebastian A. Nugroho","doi":"10.1109/PESGM48719.2022.9917011","DOIUrl":null,"url":null,"abstract":"The widespread installation of renewable energy resources in electrical power systems poses a new set of challenges primarily because of their variability. Their uncertain nature can highly affect electrical grid parameters which are essential for dynamic state estimation (DSE). In the current literature of power systems DSE usually a linearized or nonlinear ordinary differential equation model of power systems is used which cannot capture the uncertainties associated with the loads and renewable energy resources. These uncertainties can often only be taken into account via the nonlinear differential-algebraic (NL-DAE) model of power systems. This model explicitly captures renewables and the topological changes in the power system model. In this paper, we present an estimator for the complete NL-DAE representation of the power system which can provide robust state estimation in the presence of uncertainties from renewables, and investigate the impact of renewables on state estimation performance.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Uncertainty from Renewables on Dynamic State Estimation of Power Networks\",\"authors\":\"Muhammad Nadeem, A. Taha, Sebastian A. Nugroho\",\"doi\":\"10.1109/PESGM48719.2022.9917011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread installation of renewable energy resources in electrical power systems poses a new set of challenges primarily because of their variability. Their uncertain nature can highly affect electrical grid parameters which are essential for dynamic state estimation (DSE). In the current literature of power systems DSE usually a linearized or nonlinear ordinary differential equation model of power systems is used which cannot capture the uncertainties associated with the loads and renewable energy resources. These uncertainties can often only be taken into account via the nonlinear differential-algebraic (NL-DAE) model of power systems. This model explicitly captures renewables and the topological changes in the power system model. In this paper, we present an estimator for the complete NL-DAE representation of the power system which can provide robust state estimation in the presence of uncertainties from renewables, and investigate the impact of renewables on state estimation performance.\",\"PeriodicalId\":388672,\"journal\":{\"name\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM48719.2022.9917011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9917011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

可再生能源在电力系统中的广泛应用带来了一系列新的挑战,主要是因为它们的可变性。它们的不确定性会严重影响电网参数,而电网参数是动态估计的关键。在现有的电力系统DSE文献中,通常采用线性化或非线性的电力系统常微分方程模型,该模型不能捕捉与负荷和可再生能源相关的不确定性。这些不确定性通常只能通过电力系统的非线性微分代数(NL-DAE)模型来考虑。该模型明确地捕获了可再生能源和电力系统模型中的拓扑变化。在本文中,我们提出了一个电力系统完全NL-DAE表示的估计器,它可以在可再生能源存在不确定性的情况下提供鲁棒状态估计,并研究了可再生能源对状态估计性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Uncertainty from Renewables on Dynamic State Estimation of Power Networks
The widespread installation of renewable energy resources in electrical power systems poses a new set of challenges primarily because of their variability. Their uncertain nature can highly affect electrical grid parameters which are essential for dynamic state estimation (DSE). In the current literature of power systems DSE usually a linearized or nonlinear ordinary differential equation model of power systems is used which cannot capture the uncertainties associated with the loads and renewable energy resources. These uncertainties can often only be taken into account via the nonlinear differential-algebraic (NL-DAE) model of power systems. This model explicitly captures renewables and the topological changes in the power system model. In this paper, we present an estimator for the complete NL-DAE representation of the power system which can provide robust state estimation in the presence of uncertainties from renewables, and investigate the impact of renewables on state estimation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for the Operational Reliability Evaluation of Integrated Electric Power-Gas Networks The Human Factors of Public Safety Power Shutoff (PSPS) Decision-Making: Improving Decision Support Displays Data-Driven Model Reduction of the Moving Boundary Heat Pump Dynamic Model Privacy-Preserving Feasibility Assessment for P2P Energy Trading and Storage Integration Distribution System Planning for Growth in Residential Electric Vehicle Adoption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1