{"title":"用于协作通信的基于速率分割的译码转发协议","authors":"Hsiao-feng Lu","doi":"10.1109/IWSDA.2015.7458382","DOIUrl":null,"url":null,"abstract":"In this paper we first establish a general performance upper bound on the diversity-multiplexing tradeoff (DMT) for communication protocols for a half-duplex cooperative network where every node has a single antenna. This bound shows that the dynamic-decode-and-forward (DDF) protocol achieves optimal DMT among all variations of decode-and-forward based protocols when multiplexing gain r ≤ 1/2. Secondly, when r > 1/2 it shows that the diversity gain must be less than 1 for all protocols and for any number of relay nodes. Our bound also implies that the well-known cut-set-based DMT upper bound is not tight except for the single-relay network and that there are rooms to improve the performance of DDF protocol, thereby settling a long-time open question raised by Azarian et al.. In light of this breakthrough, a novel protocol based on a rate-split is proposed in this paper. Two variations, dynamic and non-dynamic, of the rate-split-based protocol are also presented. It is shown that the dynamic version achieves a DMT better than the DDF protocol, and in particular, meets the cut-set bound in the case of a single-relay network. The other variation, i.e., the non-dynamic one, has a much simpler implementation and reaches its optimal performance in only two channel uses. Moreover, it meets the cut-set bound in the case of a single-relay network.","PeriodicalId":371829,"journal":{"name":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rate-split based decode-and-forward protocols for cooperative communications\",\"authors\":\"Hsiao-feng Lu\",\"doi\":\"10.1109/IWSDA.2015.7458382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we first establish a general performance upper bound on the diversity-multiplexing tradeoff (DMT) for communication protocols for a half-duplex cooperative network where every node has a single antenna. This bound shows that the dynamic-decode-and-forward (DDF) protocol achieves optimal DMT among all variations of decode-and-forward based protocols when multiplexing gain r ≤ 1/2. Secondly, when r > 1/2 it shows that the diversity gain must be less than 1 for all protocols and for any number of relay nodes. Our bound also implies that the well-known cut-set-based DMT upper bound is not tight except for the single-relay network and that there are rooms to improve the performance of DDF protocol, thereby settling a long-time open question raised by Azarian et al.. In light of this breakthrough, a novel protocol based on a rate-split is proposed in this paper. Two variations, dynamic and non-dynamic, of the rate-split-based protocol are also presented. It is shown that the dynamic version achieves a DMT better than the DDF protocol, and in particular, meets the cut-set bound in the case of a single-relay network. The other variation, i.e., the non-dynamic one, has a much simpler implementation and reaches its optimal performance in only two channel uses. Moreover, it meets the cut-set bound in the case of a single-relay network.\",\"PeriodicalId\":371829,\"journal\":{\"name\":\"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2015.7458382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2015.7458382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rate-split based decode-and-forward protocols for cooperative communications
In this paper we first establish a general performance upper bound on the diversity-multiplexing tradeoff (DMT) for communication protocols for a half-duplex cooperative network where every node has a single antenna. This bound shows that the dynamic-decode-and-forward (DDF) protocol achieves optimal DMT among all variations of decode-and-forward based protocols when multiplexing gain r ≤ 1/2. Secondly, when r > 1/2 it shows that the diversity gain must be less than 1 for all protocols and for any number of relay nodes. Our bound also implies that the well-known cut-set-based DMT upper bound is not tight except for the single-relay network and that there are rooms to improve the performance of DDF protocol, thereby settling a long-time open question raised by Azarian et al.. In light of this breakthrough, a novel protocol based on a rate-split is proposed in this paper. Two variations, dynamic and non-dynamic, of the rate-split-based protocol are also presented. It is shown that the dynamic version achieves a DMT better than the DDF protocol, and in particular, meets the cut-set bound in the case of a single-relay network. The other variation, i.e., the non-dynamic one, has a much simpler implementation and reaches its optimal performance in only two channel uses. Moreover, it meets the cut-set bound in the case of a single-relay network.