基于多值和通用二值神经元的类cnn网络:学习及其在图像处理中的应用

N. Aizenberg, I. Aizenberg
{"title":"基于多值和通用二值神经元的类cnn网络:学习及其在图像处理中的应用","authors":"N. Aizenberg, I. Aizenberg","doi":"10.1109/CNNA.1994.381692","DOIUrl":null,"url":null,"abstract":"We consider fast convergence learning algorithms for multi-valued and universal binary neurons. These neurons are suggested to be used for design of neural networks based on CNN paradigm. On the basis of such networks we offer to solve some problems of image processing. For instance, high efficient method for contours detection obtained by learning algorithm described in the paper is presented. Also solution of the XOR-problem on the single neuron is described.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"CNN-like networks based on multi-valued and universal binary neurons: learning and application to image processing\",\"authors\":\"N. Aizenberg, I. Aizenberg\",\"doi\":\"10.1109/CNNA.1994.381692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider fast convergence learning algorithms for multi-valued and universal binary neurons. These neurons are suggested to be used for design of neural networks based on CNN paradigm. On the basis of such networks we offer to solve some problems of image processing. For instance, high efficient method for contours detection obtained by learning algorithm described in the paper is presented. Also solution of the XOR-problem on the single neuron is described.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

研究了多值和通用二值神经元的快速收敛学习算法。这些神经元被建议用于基于CNN范式的神经网络设计。在此基础上,提出了一种解决图像处理问题的方法。例如,本文提出了一种基于学习算法的高效轮廓检测方法。并给出了单神经元异或问题的求解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN-like networks based on multi-valued and universal binary neurons: learning and application to image processing
We consider fast convergence learning algorithms for multi-valued and universal binary neurons. These neurons are suggested to be used for design of neural networks based on CNN paradigm. On the basis of such networks we offer to solve some problems of image processing. For instance, high efficient method for contours detection obtained by learning algorithm described in the paper is presented. Also solution of the XOR-problem on the single neuron is described.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1