基于事件的手表面肌电运动低功耗低延迟回归方法

Marcello Zanghieri, S. Benatti, L. Benini, Elisa Donati
{"title":"基于事件的手表面肌电运动低功耗低延迟回归方法","authors":"Marcello Zanghieri, S. Benatti, L. Benini, Elisa Donati","doi":"10.1109/IWASI58316.2023.10164372","DOIUrl":null,"url":null,"abstract":"Human-Machine Interfaces (HMIs) are a rapidly progressing field, and gesture recognition is a promising method in industrial, consumer, and health use cases. Surface electromyography (sEMG) is a State-of-the-Art (SoA) pathway for human-to-machine communication. Currently, the research goal is a more intuitive and fluid control, moving from signal classification of discrete positions to continuous control based on regression. The sEMG-based regression is still scarcely explored in research since most approaches have addressed classification. In this work, we propose the first event-based EMG encoding applied to the regression of hand kinematics suitable for working in streaming on a low-power microcontroller (STM32 F401, mounting ARM Cortex-M4). The motivation for event-based encoding is to exploit upcoming neuromorphic hardware to benefit from reduced latency and power consumption. We achieve a Mean Absolute Error of $8.8\\pm 2.3$ degrees on 5 degrees of actuation on the public dataset NinaPro DB8, comparable with the SoA Deep Neural Network (DNN). We use $9\\times$ less memory and $13\\times$ less energy per inference, with $10\\times$ shorter latency per inference compared to the SoA deep net, proving suitable for resource-constrained embedded platforms.","PeriodicalId":261827,"journal":{"name":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-based Low-Power and Low-Latency Regression Method for Hand Kinematics from Surface EMG\",\"authors\":\"Marcello Zanghieri, S. Benatti, L. Benini, Elisa Donati\",\"doi\":\"10.1109/IWASI58316.2023.10164372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-Machine Interfaces (HMIs) are a rapidly progressing field, and gesture recognition is a promising method in industrial, consumer, and health use cases. Surface electromyography (sEMG) is a State-of-the-Art (SoA) pathway for human-to-machine communication. Currently, the research goal is a more intuitive and fluid control, moving from signal classification of discrete positions to continuous control based on regression. The sEMG-based regression is still scarcely explored in research since most approaches have addressed classification. In this work, we propose the first event-based EMG encoding applied to the regression of hand kinematics suitable for working in streaming on a low-power microcontroller (STM32 F401, mounting ARM Cortex-M4). The motivation for event-based encoding is to exploit upcoming neuromorphic hardware to benefit from reduced latency and power consumption. We achieve a Mean Absolute Error of $8.8\\\\pm 2.3$ degrees on 5 degrees of actuation on the public dataset NinaPro DB8, comparable with the SoA Deep Neural Network (DNN). We use $9\\\\times$ less memory and $13\\\\times$ less energy per inference, with $10\\\\times$ shorter latency per inference compared to the SoA deep net, proving suitable for resource-constrained embedded platforms.\",\"PeriodicalId\":261827,\"journal\":{\"name\":\"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWASI58316.2023.10164372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI58316.2023.10164372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人机界面(hmi)是一个快速发展的领域,手势识别在工业、消费者和健康用例中是一种很有前途的方法。表面肌电图(sEMG)是一种最先进的人机交流途径。目前的研究目标是更加直观和流畅的控制,从离散位置的信号分类转向基于回归的连续控制。基于表面肌电信号的回归研究仍然很少,因为大多数方法都解决了分类问题。在这项工作中,我们提出了第一个基于事件的EMG编码,应用于手部运动学的回归,适合在低功耗微控制器(STM32 F401,安装ARM Cortex-M4)上流式工作。基于事件的编码的动机是利用即将到来的神经形态硬件来减少延迟和功耗。我们在公共数据集NinaPro DB8上实现了5度驱动的平均绝对误差为8.8\pm 2.3°,与SoA深度神经网络(DNN)相当。与SoA深度网络相比,我们每次推理使用的内存少了9倍,能量少了13倍,每次推理的延迟缩短了10倍,证明适用于资源受限的嵌入式平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Event-based Low-Power and Low-Latency Regression Method for Hand Kinematics from Surface EMG
Human-Machine Interfaces (HMIs) are a rapidly progressing field, and gesture recognition is a promising method in industrial, consumer, and health use cases. Surface electromyography (sEMG) is a State-of-the-Art (SoA) pathway for human-to-machine communication. Currently, the research goal is a more intuitive and fluid control, moving from signal classification of discrete positions to continuous control based on regression. The sEMG-based regression is still scarcely explored in research since most approaches have addressed classification. In this work, we propose the first event-based EMG encoding applied to the regression of hand kinematics suitable for working in streaming on a low-power microcontroller (STM32 F401, mounting ARM Cortex-M4). The motivation for event-based encoding is to exploit upcoming neuromorphic hardware to benefit from reduced latency and power consumption. We achieve a Mean Absolute Error of $8.8\pm 2.3$ degrees on 5 degrees of actuation on the public dataset NinaPro DB8, comparable with the SoA Deep Neural Network (DNN). We use $9\times$ less memory and $13\times$ less energy per inference, with $10\times$ shorter latency per inference compared to the SoA deep net, proving suitable for resource-constrained embedded platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session 3: Biological sensors and applications Wearable and Flexible Fibrosis Cystic Tag with Potentiometric Chloride Activity Sensing An Ultra Low Power Pixel for Implantable Neural Interfaces Session 6: Sensors and detectors for high-energy physics Restoring the magic in design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1