基于熵优化算法的视网膜血管分割

Sukhpreet Kaur, K. S. Mann
{"title":"基于熵优化算法的视网膜血管分割","authors":"Sukhpreet Kaur, K. S. Mann","doi":"10.4018/ijhisi.2020040105","DOIUrl":null,"url":null,"abstract":"Thisarticlepresentsanalgorithmforthesegmentationofretinalbloodvesselsforthedetectionof diabeticretinopathyeyediseases.Thisdiseaseoccursinpatientswithuntreateddiabetesforalongtime. Sincethisdiseaseisrelatedtotheretina,itcaneventuallyleadtovisionimpairment.Theproposed algorithmisasupervisedlearningmethodofbloodvesselssegmentationinwhichtheclassification system is trained with the features that are extracted from the images. The proposed system is implementedontheimagesofDRIVE,STAREandCHASE_DB1databases.Thesegmentationis donebyformingclusterswiththefeaturesofpatterns.Thefeatureswereextractedusingindependent componentanalysisand theclassification isperformedbysupportvectormachines (SVM).The resultsoftheparametersaregroupedbyaccuracy,sensitivity,specificity,positivepredictivevalue, falsepositiverateandarecomparedwithparticleswarmoptimization(PSO),thefireflyoptimization algorithm(FA)andthelionoptimizationalgorithm(LOA). KEywORdS Diabetic Retinopathy, Feature Extraction, Optimization, Retinal Vessels","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Retinal Vessel Segmentation Using an Entropy-Based Optimization Algorithm\",\"authors\":\"Sukhpreet Kaur, K. S. Mann\",\"doi\":\"10.4018/ijhisi.2020040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thisarticlepresentsanalgorithmforthesegmentationofretinalbloodvesselsforthedetectionof diabeticretinopathyeyediseases.Thisdiseaseoccursinpatientswithuntreateddiabetesforalongtime. Sincethisdiseaseisrelatedtotheretina,itcaneventuallyleadtovisionimpairment.Theproposed algorithmisasupervisedlearningmethodofbloodvesselssegmentationinwhichtheclassification system is trained with the features that are extracted from the images. The proposed system is implementedontheimagesofDRIVE,STAREandCHASE_DB1databases.Thesegmentationis donebyformingclusterswiththefeaturesofpatterns.Thefeatureswereextractedusingindependent componentanalysisand theclassification isperformedbysupportvectormachines (SVM).The resultsoftheparametersaregroupedbyaccuracy,sensitivity,specificity,positivepredictivevalue, falsepositiverateandarecomparedwithparticleswarmoptimization(PSO),thefireflyoptimization algorithm(FA)andthelionoptimizationalgorithm(LOA). KEywORdS Diabetic Retinopathy, Feature Extraction, Optimization, Retinal Vessels\",\"PeriodicalId\":101861,\"journal\":{\"name\":\"Int. J. Heal. Inf. Syst. Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Heal. Inf. Syst. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijhisi.2020040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.2020040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Thisarticlepresentsanalgorithmforthesegmentationofretinalbloodvesselsforthedetectionof diabeticretinopathyeyediseases.Thisdiseaseoccursinpatientswithuntreateddiabetesforalongtime。Sincethisdiseaseisrelatedtotheretina,itcaneventuallyleadtovisionimpairment。Theproposed algorithmisasupervisedlearningmethodofbloodvesselssegmentationinwhichtheclassification system是用从图像中提取的特征来训练的。建议的系统是implementedontheimagesofDRIVE,STAREandCHASE_DB1databases。Thesegmentationis donebyformingclusterswiththefeaturesofpatterns。Thefeatureswereextractedusingindependent componentanalysisand theclassification isperformedbysupportvectormachines (SVM)。The resultsoftheparametersaregroupedbyaccuracy、sensitivity、specificity、positivepredictivevalue、falsepositiverateandarecomparedwithparticleswarmoptimization(PSO)、thefireflyoptimization algorithm_ (FA)andthelionoptimizationalgorithm(LOA)。关键词:糖尿病视网膜病变;特征提取;优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retinal Vessel Segmentation Using an Entropy-Based Optimization Algorithm
Thisarticlepresentsanalgorithmforthesegmentationofretinalbloodvesselsforthedetectionof diabeticretinopathyeyediseases.Thisdiseaseoccursinpatientswithuntreateddiabetesforalongtime. Sincethisdiseaseisrelatedtotheretina,itcaneventuallyleadtovisionimpairment.Theproposed algorithmisasupervisedlearningmethodofbloodvesselssegmentationinwhichtheclassification system is trained with the features that are extracted from the images. The proposed system is implementedontheimagesofDRIVE,STAREandCHASE_DB1databases.Thesegmentationis donebyformingclusterswiththefeaturesofpatterns.Thefeatureswereextractedusingindependent componentanalysisand theclassification isperformedbysupportvectormachines (SVM).The resultsoftheparametersaregroupedbyaccuracy,sensitivity,specificity,positivepredictivevalue, falsepositiverateandarecomparedwithparticleswarmoptimization(PSO),thefireflyoptimization algorithm(FA)andthelionoptimizationalgorithm(LOA). KEywORdS Diabetic Retinopathy, Feature Extraction, Optimization, Retinal Vessels
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of Electronic Health Records in Virtual Health Environments: The Case of Rocket Health in Uganda Hospital Management Practice of Combined Prediction Method Based on Neural Network Tablet in the Consultation Room and Physician Satisfaction Digital Disparities in Patient Adoption of Telemedicine: A Qualitative Analysis of the Patient Experience A Deep Neural Network for Detecting Coronavirus Disease Using Chest X-Ray Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1