使用粒子群优化的智能仪表数据分析

M. Suresh, M. Anbarasi, R. Jayasre, C. Shivani, P. Sowmiya
{"title":"使用粒子群优化的智能仪表数据分析","authors":"M. Suresh, M. Anbarasi, R. Jayasre, C. Shivani, P. Sowmiya","doi":"10.1109/ICSCAN.2019.8878833","DOIUrl":null,"url":null,"abstract":"Smart meter data are raw data. The pervasive recognition of smart meters generates an enormous quantity of electricity utilization data to be collected. The huge amount of data generated by smart meters are collected periodically and it will be analyzed for predicting the electricity demand which will be for convenience companies and inhabitants. Now our proposed work is to Forecasting the usage and price of smart meter data analytics using particle swarm optimization and k-means algorithm. The k-means algorithm is using for given best solution for prediction.","PeriodicalId":363880,"journal":{"name":"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smart Meter Data Analytics Using Particle Swarm Optimization\",\"authors\":\"M. Suresh, M. Anbarasi, R. Jayasre, C. Shivani, P. Sowmiya\",\"doi\":\"10.1109/ICSCAN.2019.8878833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart meter data are raw data. The pervasive recognition of smart meters generates an enormous quantity of electricity utilization data to be collected. The huge amount of data generated by smart meters are collected periodically and it will be analyzed for predicting the electricity demand which will be for convenience companies and inhabitants. Now our proposed work is to Forecasting the usage and price of smart meter data analytics using particle swarm optimization and k-means algorithm. The k-means algorithm is using for given best solution for prediction.\",\"PeriodicalId\":363880,\"journal\":{\"name\":\"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCAN.2019.8878833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN.2019.8878833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

智能电表数据是原始数据。智能电表的普及产生了大量需要收集的用电数据。智能电表产生的大量数据被定期收集,并将被分析用于预测电力需求,这将为方便公司和居民。现在我们提出的工作是使用粒子群优化和k-means算法来预测智能电表数据分析的使用和价格。k-means算法用于给定最优解的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart Meter Data Analytics Using Particle Swarm Optimization
Smart meter data are raw data. The pervasive recognition of smart meters generates an enormous quantity of electricity utilization data to be collected. The huge amount of data generated by smart meters are collected periodically and it will be analyzed for predicting the electricity demand which will be for convenience companies and inhabitants. Now our proposed work is to Forecasting the usage and price of smart meter data analytics using particle swarm optimization and k-means algorithm. The k-means algorithm is using for given best solution for prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security Analytics For Heterogeneous Web Pipeline Gas Leakage Detection And Location Identification System IoT Enabled Forest Fire Detection and Early Warning System Research opportunities on virtual reality and augmented reality: a survey Performance Analysis of Hub BLDC Motor Using Finite Element Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1