利用单一惯性测量单元对运行疲劳进行二元分类

Cillian Buckley, M. O'Reilly, D. Whelan, A. Farrell, L. Clark, V. Longo, M. Gilchrist, B. Caulfield
{"title":"利用单一惯性测量单元对运行疲劳进行二元分类","authors":"Cillian Buckley, M. O'Reilly, D. Whelan, A. Farrell, L. Clark, V. Longo, M. Gilchrist, B. Caulfield","doi":"10.1109/BSN.2017.7936040","DOIUrl":null,"url":null,"abstract":"The popularity of running has increased in recent years. A rise in the incidence of running-related overuse musculoskeletal injuries has occurred parallel to this. This study investigates the capability of using data from a single inertial measurement unit (IMU) to differentiate between running form in a non-fatigued and fatigued state. Data was captured from an IMU placed on the lumbar spine, right shank and left shank in 21 recreational runners (10 male, 11 female) during separate 400m running trials. The trials were performed prior to and following a fatiguing protocol. Following stride segmentation, IMU signal features were extracted from the labelled (non-fatigued vs fatigued) sensor data and used to train both a Global and Personalised classifier for each individual IMU location. A single IMU on the Lumbar spine displayed 75% accuracy, 73% sensitivity and 77% specificity when using a Global Classifier. A single IMU on the Right Shank displayed 100% accuracy, 100% sensitivity and 100% specificity when using a Personalised Classifier. These results indicate that a single IMU has the potential to differentiate between non-fatigued and fatigued running states with a high level of accuracy.","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Binary classification of running fatigue using a single inertial measurement unit\",\"authors\":\"Cillian Buckley, M. O'Reilly, D. Whelan, A. Farrell, L. Clark, V. Longo, M. Gilchrist, B. Caulfield\",\"doi\":\"10.1109/BSN.2017.7936040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of running has increased in recent years. A rise in the incidence of running-related overuse musculoskeletal injuries has occurred parallel to this. This study investigates the capability of using data from a single inertial measurement unit (IMU) to differentiate between running form in a non-fatigued and fatigued state. Data was captured from an IMU placed on the lumbar spine, right shank and left shank in 21 recreational runners (10 male, 11 female) during separate 400m running trials. The trials were performed prior to and following a fatiguing protocol. Following stride segmentation, IMU signal features were extracted from the labelled (non-fatigued vs fatigued) sensor data and used to train both a Global and Personalised classifier for each individual IMU location. A single IMU on the Lumbar spine displayed 75% accuracy, 73% sensitivity and 77% specificity when using a Global Classifier. A single IMU on the Right Shank displayed 100% accuracy, 100% sensitivity and 100% specificity when using a Personalised Classifier. These results indicate that a single IMU has the potential to differentiate between non-fatigued and fatigued running states with a high level of accuracy.\",\"PeriodicalId\":249670,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2017.7936040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

近年来,跑步越来越受欢迎。与此同时,与跑步相关的过度使用肌肉骨骼损伤的发生率也在上升。本研究探讨了使用来自单个惯性测量单元(IMU)的数据来区分非疲劳状态和疲劳状态下的跑步形式的能力。在独立的400米跑步试验中,从21名休闲跑步者(10名男性,11名女性)的腰椎、右小腿和左小腿上放置的IMU中获取数据。试验是在疲劳方案之前和之后进行的。在跨步分割之后,从标记的(非疲劳与疲劳)传感器数据中提取IMU信号特征,并用于为每个单独的IMU位置训练全局和个性化分类器。当使用全局分类器时,腰椎单个IMU显示75%的准确率,73%的灵敏度和77%的特异性。当使用个性化分类器时,右柄上的单个IMU显示100%的准确性,100%的灵敏度和100%的特异性。这些结果表明,单个IMU具有区分非疲劳和疲劳运行状态的潜力,并且具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Binary classification of running fatigue using a single inertial measurement unit
The popularity of running has increased in recent years. A rise in the incidence of running-related overuse musculoskeletal injuries has occurred parallel to this. This study investigates the capability of using data from a single inertial measurement unit (IMU) to differentiate between running form in a non-fatigued and fatigued state. Data was captured from an IMU placed on the lumbar spine, right shank and left shank in 21 recreational runners (10 male, 11 female) during separate 400m running trials. The trials were performed prior to and following a fatiguing protocol. Following stride segmentation, IMU signal features were extracted from the labelled (non-fatigued vs fatigued) sensor data and used to train both a Global and Personalised classifier for each individual IMU location. A single IMU on the Lumbar spine displayed 75% accuracy, 73% sensitivity and 77% specificity when using a Global Classifier. A single IMU on the Right Shank displayed 100% accuracy, 100% sensitivity and 100% specificity when using a Personalised Classifier. These results indicate that a single IMU has the potential to differentiate between non-fatigued and fatigued running states with a high level of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiowave propagation characteristics of the intra-body channel at 2.38 GHz Smart-shoe self-powered by walking A personalized air quality sensing system - a preliminary study on assessing the air quality of London underground stations Unsupervised deep representation learning to remove motion artifacts in free-mode body sensor networks Quantifying postural instability in Parkinsonian gait from inertial sensor data during standardised clinical gait tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1