基于层次模糊推理的在线手写字母识别

A. Hennig, N. Sherkat, R. Whitrow
{"title":"基于层次模糊推理的在线手写字母识别","authors":"A. Hennig, N. Sherkat, R. Whitrow","doi":"10.1109/ICDAR.1997.620648","DOIUrl":null,"url":null,"abstract":"The recognition of unconstrained handwriting has to cope with the ambiguity and variability of cursive script. Preprocessing techniques are often applied to on-line data before representing the script as basic primitives, resulting in the propagation of errors introduced during pre-processing. This paper therefore combines pre-processing of the data (i.e. tangential smoothing) and encoding into primitives (Partial Strokes) in a single step. Finding the correct character at the correct place (i.e. letter spotting) is the main problem in non-holistic recognition approaches. Many cursive letters are composed of common shapes of varying complexity that can in turn consist of other subshapes. In this paper, we present a production rule system using Hierarchical Fuzzy Inference in order to exploit this hierarchical property of cursive script. Shapes of increasing complexity are found on a page of handwriting until letters are finally spotted. Zoning is then applied to verify their vertical position. The performance of letter spotting is compared with an alternative method.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Recognising letters in on-line handwriting using hierarchical fuzzy inference\",\"authors\":\"A. Hennig, N. Sherkat, R. Whitrow\",\"doi\":\"10.1109/ICDAR.1997.620648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recognition of unconstrained handwriting has to cope with the ambiguity and variability of cursive script. Preprocessing techniques are often applied to on-line data before representing the script as basic primitives, resulting in the propagation of errors introduced during pre-processing. This paper therefore combines pre-processing of the data (i.e. tangential smoothing) and encoding into primitives (Partial Strokes) in a single step. Finding the correct character at the correct place (i.e. letter spotting) is the main problem in non-holistic recognition approaches. Many cursive letters are composed of common shapes of varying complexity that can in turn consist of other subshapes. In this paper, we present a production rule system using Hierarchical Fuzzy Inference in order to exploit this hierarchical property of cursive script. Shapes of increasing complexity are found on a page of handwriting until letters are finally spotted. Zoning is then applied to verify their vertical position. The performance of letter spotting is compared with an alternative method.\",\"PeriodicalId\":435320,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.1997.620648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.620648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

无约束笔迹的识别必须处理草书的歧义性和可变性。在将脚本表示为基本原语之前,通常对在线数据应用预处理技术,导致预处理过程中引入的错误传播。因此,本文将数据预处理(即切向平滑)和编码成原语(部分笔画)在一个步骤中结合起来。在正确的位置找到正确的字符(即字母定位)是非整体识别方法的主要问题。许多草书字母由不同复杂程度的普通形状组成,这些形状又可以由其他子形状组成。为了充分利用草书的这种层次性,本文提出了一种基于层次模糊推理的生成规则系统。在一页手写体上发现越来越复杂的形状,直到最后发现字母。然后应用分区来验证它们的垂直位置。将字母识别的性能与另一种方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognising letters in on-line handwriting using hierarchical fuzzy inference
The recognition of unconstrained handwriting has to cope with the ambiguity and variability of cursive script. Preprocessing techniques are often applied to on-line data before representing the script as basic primitives, resulting in the propagation of errors introduced during pre-processing. This paper therefore combines pre-processing of the data (i.e. tangential smoothing) and encoding into primitives (Partial Strokes) in a single step. Finding the correct character at the correct place (i.e. letter spotting) is the main problem in non-holistic recognition approaches. Many cursive letters are composed of common shapes of varying complexity that can in turn consist of other subshapes. In this paper, we present a production rule system using Hierarchical Fuzzy Inference in order to exploit this hierarchical property of cursive script. Shapes of increasing complexity are found on a page of handwriting until letters are finally spotted. Zoning is then applied to verify their vertical position. The performance of letter spotting is compared with an alternative method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Document layout analysis based on emergent computation Offline handwritten Chinese character recognition via radical extraction and recognition Boundary normalization for recognition of non-touching non-degraded characters Words recognition using associative memory Image and text coupling for creating electronic books from manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1