u-net在RGB图像去噪中的有效性

Rina Komatsu, T. Gonsalves
{"title":"u-net在RGB图像去噪中的有效性","authors":"Rina Komatsu, T. Gonsalves","doi":"10.5121/CSIT.2019.90201","DOIUrl":null,"url":null,"abstract":"Digital images often contain “noise” which takes away their clarity and sharpness. Most of the\nexisting denoising algorithms do not offer the best solution because there are difficulties such as removing strong noise while leaving the features and other details of the image intact. Faced with the problem of denoising, we tried solving it with a Convolutional Neural Network\narchitecture called the “U-Net”. This paper deals with the training of a U-Net to remove 3 different kinds of noise: Gaussian, Blockiness, and Camera shake. Our results indicate the effectiveness of U-Net in denoising images while leaving their features and other details intact","PeriodicalId":251548,"journal":{"name":"Computer Science & Information Technology(CS & IT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"EFFECTIVENESS OF U-NET IN DENOISING RGB IMAGES\",\"authors\":\"Rina Komatsu, T. Gonsalves\",\"doi\":\"10.5121/CSIT.2019.90201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital images often contain “noise” which takes away their clarity and sharpness. Most of the\\nexisting denoising algorithms do not offer the best solution because there are difficulties such as removing strong noise while leaving the features and other details of the image intact. Faced with the problem of denoising, we tried solving it with a Convolutional Neural Network\\narchitecture called the “U-Net”. This paper deals with the training of a U-Net to remove 3 different kinds of noise: Gaussian, Blockiness, and Camera shake. Our results indicate the effectiveness of U-Net in denoising images while leaving their features and other details intact\",\"PeriodicalId\":251548,\"journal\":{\"name\":\"Computer Science & Information Technology(CS & IT)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science & Information Technology(CS & IT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/CSIT.2019.90201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Information Technology(CS & IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2019.90201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数字图像通常包含“噪声”,这会降低图像的清晰度和清晰度。大多数现有的去噪算法都不能提供最好的解决方案,因为存在一些困难,比如在保持图像特征和其他细节完整的情况下去除强噪声。面对去噪问题,我们尝试用一种叫做“U-Net”的卷积神经网络架构来解决它。本文讨论了U-Net的训练,以去除3种不同的噪声:高斯噪声、块噪和相机抖动。我们的结果表明,U-Net在保持图像特征和其他细节不变的情况下,对图像去噪是有效的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EFFECTIVENESS OF U-NET IN DENOISING RGB IMAGES
Digital images often contain “noise” which takes away their clarity and sharpness. Most of the existing denoising algorithms do not offer the best solution because there are difficulties such as removing strong noise while leaving the features and other details of the image intact. Faced with the problem of denoising, we tried solving it with a Convolutional Neural Network architecture called the “U-Net”. This paper deals with the training of a U-Net to remove 3 different kinds of noise: Gaussian, Blockiness, and Camera shake. Our results indicate the effectiveness of U-Net in denoising images while leaving their features and other details intact
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PARALLEL VERIFICATION EXECUTION WITH VERIFY ALGEBRA IN A CLOUD ENVIRONMENT THE EFFECT OF VISUALIZING ROLE OF VARIABLE IN OBJECT ORIENTED PROGRAMMING UNDERSTANDING DETECTION OF HATE SPEECH IN SOCIAL NETWORKS: A SURVEY ON MULTILINGUAL CORPUS EFFECTIVENESS OF U-NET IN DENOISING RGB IMAGES IN-VEHICLE CAMERA IMAGES PREDICTION BY GENERATIVE ADVERSARIAL NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1