利用多目标进化算法预测MHC II类结合肽

Wang Lian, Liu Juan, Luo Fei
{"title":"利用多目标进化算法预测MHC II类结合肽","authors":"Wang Lian, Liu Juan, Luo Fei","doi":"10.1109/CIS.2007.180","DOIUrl":null,"url":null,"abstract":"The identification of T-cell epitopes is important for vaccine development. An epitope is a peptide segment that can bind to both a T-cell receptor and a major histocompatibility complex (MHC) molecule. The prediction of MHC binding peptides is a crucial part of the epitopes identification. This paper presents a novel Multi-Objective Evolutionary Algorithm (MOEA) to predict MHC class II binding peptides. The optimal search strategy of MOEA is used to find a position specific scoring matrix which can present MHC class II binding peptides quantitative motif. The performance of the new algorithm has been evaluated with benchmark datasets","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"24 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of MHC Class II Binding Peptides Using a Multi-Objective Evolutionary Algorithm\",\"authors\":\"Wang Lian, Liu Juan, Luo Fei\",\"doi\":\"10.1109/CIS.2007.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of T-cell epitopes is important for vaccine development. An epitope is a peptide segment that can bind to both a T-cell receptor and a major histocompatibility complex (MHC) molecule. The prediction of MHC binding peptides is a crucial part of the epitopes identification. This paper presents a novel Multi-Objective Evolutionary Algorithm (MOEA) to predict MHC class II binding peptides. The optimal search strategy of MOEA is used to find a position specific scoring matrix which can present MHC class II binding peptides quantitative motif. The performance of the new algorithm has been evaluated with benchmark datasets\",\"PeriodicalId\":127238,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"volume\":\"24 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security (CIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2007.180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

t细胞表位的鉴定对疫苗的研制具有重要意义。表位是一个肽段,可以结合t细胞受体和主要组织相容性复合体(MHC)分子。MHC结合肽的预测是表位鉴定的重要组成部分。提出了一种新的多目标进化算法(MOEA)来预测MHC II类结合肽。利用MOEA的最优搜索策略,寻找能够呈现MHC II类结合肽定量基序的位置特异性评分矩阵。用基准数据集对新算法的性能进行了评价
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of MHC Class II Binding Peptides Using a Multi-Objective Evolutionary Algorithm
The identification of T-cell epitopes is important for vaccine development. An epitope is a peptide segment that can bind to both a T-cell receptor and a major histocompatibility complex (MHC) molecule. The prediction of MHC binding peptides is a crucial part of the epitopes identification. This paper presents a novel Multi-Objective Evolutionary Algorithm (MOEA) to predict MHC class II binding peptides. The optimal search strategy of MOEA is used to find a position specific scoring matrix which can present MHC class II binding peptides quantitative motif. The performance of the new algorithm has been evaluated with benchmark datasets
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and Performance Evaluation of an Adaptable Failure Detector for Distributed System Generalized Synchronization Theorem for Non-Autonomous Differential Equation with Application in Encryption Scheme Adaptive Trust Management in MANET The Study of Compost Quality Evaluation Modeling Method Based on Wavelet Neural Network for Sewage Treatment Game Theory Based Optimization of Security Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1