基于多启发式协同蚁群系统的贝叶斯网络消去排序优化

Xuchu Dong, D. Ouyang, Yuxin Ye, Haihong Yu, Yonggang Zhang
{"title":"基于多启发式协同蚁群系统的贝叶斯网络消去排序优化","authors":"Xuchu Dong, D. Ouyang, Yuxin Ye, Haihong Yu, Yonggang Zhang","doi":"10.1109/WI-IAT.2010.33","DOIUrl":null,"url":null,"abstract":"To solve the problem of searching for an optimal elimination ordering of Bayesian networks, a novel effective heuristic, MinSum Weight, and an ACS approach incorporated with multi-heuristic mechanism are proposed. The ACS approach named MHC-ACS utilizes a set of heuristics to direct the ants moving in the search space. The cooperation of multiple heuristics helps ants explore more regions. Moreover, the most appropriate heuristic will be identified and be reinforced with the evolution of the whole system. Experiments demonstrate that MHC-ACS has a better performance than other swarm intelligence methods.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-heuristic Cooperative Ant Colony System for Optimizing Elimination Ordering of Bayesian Networks\",\"authors\":\"Xuchu Dong, D. Ouyang, Yuxin Ye, Haihong Yu, Yonggang Zhang\",\"doi\":\"10.1109/WI-IAT.2010.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of searching for an optimal elimination ordering of Bayesian networks, a novel effective heuristic, MinSum Weight, and an ACS approach incorporated with multi-heuristic mechanism are proposed. The ACS approach named MHC-ACS utilizes a set of heuristics to direct the ants moving in the search space. The cooperation of multiple heuristics helps ants explore more regions. Moreover, the most appropriate heuristic will be identified and be reinforced with the evolution of the whole system. Experiments demonstrate that MHC-ACS has a better performance than other swarm intelligence methods.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决贝叶斯网络的最优消去排序问题,提出了一种新的有效启发式方法——最小和权值法,以及一种结合多启发式机制的ACS方法。名为MHC-ACS的ACS方法利用一组启发式方法来指导蚂蚁在搜索空间中的移动。多种启发式的合作有助于蚂蚁探索更多的区域。此外,最合适的启发式将被确定并随着整个系统的发展而得到加强。实验表明,MHC-ACS算法比其他群体智能算法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-heuristic Cooperative Ant Colony System for Optimizing Elimination Ordering of Bayesian Networks
To solve the problem of searching for an optimal elimination ordering of Bayesian networks, a novel effective heuristic, MinSum Weight, and an ACS approach incorporated with multi-heuristic mechanism are proposed. The ACS approach named MHC-ACS utilizes a set of heuristics to direct the ants moving in the search space. The cooperation of multiple heuristics helps ants explore more regions. Moreover, the most appropriate heuristic will be identified and be reinforced with the evolution of the whole system. Experiments demonstrate that MHC-ACS has a better performance than other swarm intelligence methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1