支持向量机并非总是可信的:通过分析其置信值来判断多类支持向量机的输出是真还是假

T. Yamasaki, Takaki Maeda, K. Aizawa
{"title":"支持向量机并非总是可信的:通过分析其置信值来判断多类支持向量机的输出是真还是假","authors":"T. Yamasaki, Takaki Maeda, K. Aizawa","doi":"10.1109/MMSP.2014.6958800","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm to distinguish whether the output label that is yielded from multiclass support vector machine (SVM) is true or false without knowing the answer. Such judgment is done only by the confidence analysis based on the pre-training/testing using the training data. Such true/false judgment is useful for refining the output labels. We experimentally demonstrate that the decision value difference between the top candidate and the second candidate is a good measure. In addition, a proper threshold can be determined by the pre-training/testing using only the training data. Experimental results using three standard image datasets demonstrate that our proposed algorithm can improve Matthews correlation coefficient (MCC) much better than simply thresholding the decision value for the top candidate.","PeriodicalId":164858,"journal":{"name":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SVM is not always confident: Telling whether the output from multiclass SVM is true or false by analysing its confidence values\",\"authors\":\"T. Yamasaki, Takaki Maeda, K. Aizawa\",\"doi\":\"10.1109/MMSP.2014.6958800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm to distinguish whether the output label that is yielded from multiclass support vector machine (SVM) is true or false without knowing the answer. Such judgment is done only by the confidence analysis based on the pre-training/testing using the training data. Such true/false judgment is useful for refining the output labels. We experimentally demonstrate that the decision value difference between the top candidate and the second candidate is a good measure. In addition, a proper threshold can be determined by the pre-training/testing using only the training data. Experimental results using three standard image datasets demonstrate that our proposed algorithm can improve Matthews correlation coefficient (MCC) much better than simply thresholding the decision value for the top candidate.\",\"PeriodicalId\":164858,\"journal\":{\"name\":\"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2014.6958800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2014.6958800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在不知道答案的情况下区分多类支持向量机输出标签是真还是假的算法。这种判断只能通过使用训练数据进行预训练/测试的置信度分析来完成。这样的真/假判断对于精炼输出标签很有用。我们通过实验证明,第一候选和第二候选之间的决策值差异是一个很好的度量。此外,可以通过仅使用训练数据的预训练/测试来确定适当的阈值。使用三个标准图像数据集的实验结果表明,与简单地对最优候选图像的决策值进行阈值化相比,我们提出的算法可以更好地提高马修斯相关系数(MCC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SVM is not always confident: Telling whether the output from multiclass SVM is true or false by analysing its confidence values
This paper presents an algorithm to distinguish whether the output label that is yielded from multiclass support vector machine (SVM) is true or false without knowing the answer. Such judgment is done only by the confidence analysis based on the pre-training/testing using the training data. Such true/false judgment is useful for refining the output labels. We experimentally demonstrate that the decision value difference between the top candidate and the second candidate is a good measure. In addition, a proper threshold can be determined by the pre-training/testing using only the training data. Experimental results using three standard image datasets demonstrate that our proposed algorithm can improve Matthews correlation coefficient (MCC) much better than simply thresholding the decision value for the top candidate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph-based depth video denoising and event detection for sleep monitoring Shot type characterization in 2D and 3D video content Correlation modeling for a distributed scalable video codec based on the HEVC standard Embedded coding of optical flow fields for scalable video compression Performance evaluation of the emerging JPEG XT image compression standard
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1