在双威多核架构上实现高效SpMV

Changxi Liu, Biwei Xie, Xin Liu, Wei Xue, Hailong Yang, Xu Liu
{"title":"在双威多核架构上实现高效SpMV","authors":"Changxi Liu, Biwei Xie, Xin Liu, Wei Xue, Hailong Yang, Xu Liu","doi":"10.1145/3205289.3205313","DOIUrl":null,"url":null,"abstract":"Sparse Matrix-Vector Multiplication (SpMV) is an essential computation kernel for many data-analytic workloads running in both supercomputers and data centers. The intrinsic irregularity in SpMV is challenging to achieve high performance, especially when porting to new architectures. In this paper, we present our work on designing and implementing efficient SpMV algorithms on Sunway, a novel architecture with many unique features. To fully exploit the Sunway architecture, we have designed a dual-side multi-level partition mechanism on both sparse matrices and hardware resources to improve locality and parallelism. On one hand, we partition sparse matrices into blocks, tiles, and slices for different granularities. On the other hand, we partition cores in a Sunway processor into fleets, and further dedicate part of cores in a fleet as computation and I/O cores. Moreover, we have optimized the communication between partitions to further improve the performance. Our scheme is generally applicable to different SpMV formats and implementations. For evaluation, we have applied our techniques atop a popular SpMV format, CSR. Experimental results on 18 datasets show that our optimization yields up to 15.5x (12.3x on average) speedups.","PeriodicalId":441217,"journal":{"name":"Proceedings of the 2018 International Conference on Supercomputing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Towards Efficient SpMV on Sunway Manycore Architectures\",\"authors\":\"Changxi Liu, Biwei Xie, Xin Liu, Wei Xue, Hailong Yang, Xu Liu\",\"doi\":\"10.1145/3205289.3205313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse Matrix-Vector Multiplication (SpMV) is an essential computation kernel for many data-analytic workloads running in both supercomputers and data centers. The intrinsic irregularity in SpMV is challenging to achieve high performance, especially when porting to new architectures. In this paper, we present our work on designing and implementing efficient SpMV algorithms on Sunway, a novel architecture with many unique features. To fully exploit the Sunway architecture, we have designed a dual-side multi-level partition mechanism on both sparse matrices and hardware resources to improve locality and parallelism. On one hand, we partition sparse matrices into blocks, tiles, and slices for different granularities. On the other hand, we partition cores in a Sunway processor into fleets, and further dedicate part of cores in a fleet as computation and I/O cores. Moreover, we have optimized the communication between partitions to further improve the performance. Our scheme is generally applicable to different SpMV formats and implementations. For evaluation, we have applied our techniques atop a popular SpMV format, CSR. Experimental results on 18 datasets show that our optimization yields up to 15.5x (12.3x on average) speedups.\",\"PeriodicalId\":441217,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Supercomputing\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3205289.3205313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205289.3205313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

稀疏矩阵向量乘法(SpMV)是运行在超级计算机和数据中心中的许多数据分析工作负载的基本计算内核。SpMV固有的不规则性对实现高性能具有挑战性,特别是在移植到新体系结构时。在本文中,我们介绍了我们在Sunway上设计和实现高效SpMV算法的工作,Sunway是一种具有许多独特特征的新型架构。为了充分利用双威架构,我们在稀疏矩阵和硬件资源上设计了双向多级分区机制,以提高局部性和并行性。一方面,我们将稀疏矩阵划分为不同粒度的块、块和片。另一方面,我们将神威处理器的内核划分为多个队列,并进一步将队列中的部分内核用作计算和I/O内核。此外,我们还优化了分区之间的通信,以进一步提高性能。我们的方案一般适用于不同的SpMV格式和实现。为了进行评估,我们在流行的SpMV格式CSR上应用了我们的技术。在18个数据集上的实验结果表明,我们的优化产生了高达15.5倍(平均12.3倍)的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Efficient SpMV on Sunway Manycore Architectures
Sparse Matrix-Vector Multiplication (SpMV) is an essential computation kernel for many data-analytic workloads running in both supercomputers and data centers. The intrinsic irregularity in SpMV is challenging to achieve high performance, especially when porting to new architectures. In this paper, we present our work on designing and implementing efficient SpMV algorithms on Sunway, a novel architecture with many unique features. To fully exploit the Sunway architecture, we have designed a dual-side multi-level partition mechanism on both sparse matrices and hardware resources to improve locality and parallelism. On one hand, we partition sparse matrices into blocks, tiles, and slices for different granularities. On the other hand, we partition cores in a Sunway processor into fleets, and further dedicate part of cores in a fleet as computation and I/O cores. Moreover, we have optimized the communication between partitions to further improve the performance. Our scheme is generally applicable to different SpMV formats and implementations. For evaluation, we have applied our techniques atop a popular SpMV format, CSR. Experimental results on 18 datasets show that our optimization yields up to 15.5x (12.3x on average) speedups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ComPEND CELIA PA-SSD: A Page-Type Aware TLC SSD for Improved Write/Read Performance and Storage Efficiency GRU Sculptor: Flexible Approximation with Selective Dynamic Loop Perforation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1