利用信念传播的网络传感器

S. Sanghavi, D. Malioutov, A. Willsky
{"title":"利用信念传播的网络传感器","authors":"S. Sanghavi, D. Malioutov, A. Willsky","doi":"10.1109/ALLERTON.2008.4797583","DOIUrl":null,"url":null,"abstract":"This paper investigates the performance of belief propagation (BP) as a distributed solution to two combinatorial resource allocation problems arising in sensor networks: network formation and fusion center location. We model these problems by max-weight b-matching and uncapacitated facility location, respectively. Each of these is a classical optimization problem. For both problems, we (a) show how BP can be simplified for implementation in distributed environments where transmissions are broadcast and can interfere, (b) derive a principled interpretation of estimates before convergence, and (c) compare the performance of BP to that of linear programming.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Networking sensors using belief propagation\",\"authors\":\"S. Sanghavi, D. Malioutov, A. Willsky\",\"doi\":\"10.1109/ALLERTON.2008.4797583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the performance of belief propagation (BP) as a distributed solution to two combinatorial resource allocation problems arising in sensor networks: network formation and fusion center location. We model these problems by max-weight b-matching and uncapacitated facility location, respectively. Each of these is a classical optimization problem. For both problems, we (a) show how BP can be simplified for implementation in distributed environments where transmissions are broadcast and can interfere, (b) derive a principled interpretation of estimates before convergence, and (c) compare the performance of BP to that of linear programming.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了基于信念传播(BP)的分布式解决方案在传感器网络中出现的两个组合资源分配问题:网络的形成和融合中心的定位。我们分别通过最大权重b匹配和无容量设施位置来建模这些问题。这些都是经典的优化问题。对于这两个问题,我们(a)展示了如何简化BP以在传输广播且可能干扰的分布式环境中实现,(b)推导出收敛前估计的原则解释,以及(c)将BP的性能与线性规划的性能进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Networking sensors using belief propagation
This paper investigates the performance of belief propagation (BP) as a distributed solution to two combinatorial resource allocation problems arising in sensor networks: network formation and fusion center location. We model these problems by max-weight b-matching and uncapacitated facility location, respectively. Each of these is a classical optimization problem. For both problems, we (a) show how BP can be simplified for implementation in distributed environments where transmissions are broadcast and can interfere, (b) derive a principled interpretation of estimates before convergence, and (c) compare the performance of BP to that of linear programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning sparse doubly-selective channels Ergodic two-user interference channels: Is separability optimal? Weight distribution of codes on hypergraphs Compound multiple access channels with conferencing decoders Transmission techniques for relay-interference networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1