基于海面目标分形特征的Logistic回归预测

Shao Fuchi, Xing Hongyan
{"title":"基于海面目标分形特征的Logistic回归预测","authors":"Shao Fuchi, Xing Hongyan","doi":"10.1109/ICEMI46757.2019.9101436","DOIUrl":null,"url":null,"abstract":"Sea clutter is a kind of signal with low signal-to-noise ratio. Fractional Fourier transform is used to gather energy. Fractional Brownian motion model is introduced to model sea clutter. Based on the measured data of IPIX radar, high-order multi-fractal parameters are calculated. Fitting the multi-fractal parameters, choosing the steepest interval and calculating its slope. At the same time, choosing the fractal parameters with scale -30 under HH and VV polarization. The small targets are 0 and 1, respectively. The slope and high-scale fractal parameters of different sea conditions are normalized, and the normalized data are predicted by logistic regression. The simulation results show that FRFT can aggregate the energy of sea clutter signal. Logistic regression model can predict the fractal parameter data of sea clutter FRFT domain, and the prediction accuracy reaches 83.42%.","PeriodicalId":419168,"journal":{"name":"2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logistic regression prediction based on fractal characteristics of sea surface targets\",\"authors\":\"Shao Fuchi, Xing Hongyan\",\"doi\":\"10.1109/ICEMI46757.2019.9101436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sea clutter is a kind of signal with low signal-to-noise ratio. Fractional Fourier transform is used to gather energy. Fractional Brownian motion model is introduced to model sea clutter. Based on the measured data of IPIX radar, high-order multi-fractal parameters are calculated. Fitting the multi-fractal parameters, choosing the steepest interval and calculating its slope. At the same time, choosing the fractal parameters with scale -30 under HH and VV polarization. The small targets are 0 and 1, respectively. The slope and high-scale fractal parameters of different sea conditions are normalized, and the normalized data are predicted by logistic regression. The simulation results show that FRFT can aggregate the energy of sea clutter signal. Logistic regression model can predict the fractal parameter data of sea clutter FRFT domain, and the prediction accuracy reaches 83.42%.\",\"PeriodicalId\":419168,\"journal\":{\"name\":\"2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMI46757.2019.9101436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMI46757.2019.9101436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海杂波是一种低信噪比的信号。分数阶傅里叶变换用于收集能量。引入分数阶布朗运动模型来模拟海杂波。基于IPIX雷达的实测数据,计算了高阶多重分形参数。拟合多重分形参数,选择最陡区间并计算其斜率。同时,选取HH和VV极化下-30标度的分形参数。小目标分别为0和1。对不同海况的坡度和高尺度分形参数进行归一化,并对归一化后的数据进行logistic回归预测。仿真结果表明,FRFT能有效地对海杂波信号的能量进行聚合。Logistic回归模型可以预测海杂波FRFT域的分形参数数据,预测精度达到83.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Logistic regression prediction based on fractal characteristics of sea surface targets
Sea clutter is a kind of signal with low signal-to-noise ratio. Fractional Fourier transform is used to gather energy. Fractional Brownian motion model is introduced to model sea clutter. Based on the measured data of IPIX radar, high-order multi-fractal parameters are calculated. Fitting the multi-fractal parameters, choosing the steepest interval and calculating its slope. At the same time, choosing the fractal parameters with scale -30 under HH and VV polarization. The small targets are 0 and 1, respectively. The slope and high-scale fractal parameters of different sea conditions are normalized, and the normalized data are predicted by logistic regression. The simulation results show that FRFT can aggregate the energy of sea clutter signal. Logistic regression model can predict the fractal parameter data of sea clutter FRFT domain, and the prediction accuracy reaches 83.42%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Localization error of magnetic dipole by measuring remote magnetic field and field-gradient tensor Design of the measurement system for the ship’s physical fields Applicability analysis of traditional uncertainty evaluation method for wind speed measurement with L-shaped pitot static tube Study on the positioning performance of a new positioning and communication fusion system Channel Mismatch Calibration in Time-Interleaved ADCs based on One-Dimensional Optimization and Trigger
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1