卷积神经网络概念可解释性的评分方法

Mustafa Kagan Gürkan, N. Arica, F. Yarman-Vural
{"title":"卷积神经网络概念可解释性的评分方法","authors":"Mustafa Kagan Gürkan, N. Arica, F. Yarman-Vural","doi":"10.1109/SIU55565.2022.9864930","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a scoring algorithm for measuring the interpretability of CNN models by focusing on the feature extraction operation at the convolutional layers. The proposed approach is based on the principal of concept analysis, for a predefined list of concepts. A map of the network is created based on its responsiveness against each concept. Once this map is ready, various images can be applied as inputs and they are matched with the concepts whose hidden nodes are highly activated. Finally, the evaluation algorithm kicks in to use these descriptions during the final prediction and provides human-understandable explanations.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scoring Method for Interpretability of Concepts in Convolutional Neural Networks\",\"authors\":\"Mustafa Kagan Gürkan, N. Arica, F. Yarman-Vural\",\"doi\":\"10.1109/SIU55565.2022.9864930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a scoring algorithm for measuring the interpretability of CNN models by focusing on the feature extraction operation at the convolutional layers. The proposed approach is based on the principal of concept analysis, for a predefined list of concepts. A map of the network is created based on its responsiveness against each concept. Once this map is ready, various images can be applied as inputs and they are matched with the concepts whose hidden nodes are highly activated. Finally, the evaluation algorithm kicks in to use these descriptions during the final prediction and provides human-understandable explanations.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种评分算法,通过关注卷积层的特征提取操作来衡量CNN模型的可解释性。提出的方法是基于概念分析的原则,对于一个预定义的概念列表。根据网络对每个概念的响应度创建网络地图。一旦这个地图准备好了,就可以应用各种图像作为输入,并将它们与隐藏节点高度激活的概念相匹配。最后,评估算法开始在最终预测过程中使用这些描述,并提供人类可以理解的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Scoring Method for Interpretability of Concepts in Convolutional Neural Networks
In this paper, we propose a scoring algorithm for measuring the interpretability of CNN models by focusing on the feature extraction operation at the convolutional layers. The proposed approach is based on the principal of concept analysis, for a predefined list of concepts. A map of the network is created based on its responsiveness against each concept. Once this map is ready, various images can be applied as inputs and they are matched with the concepts whose hidden nodes are highly activated. Finally, the evaluation algorithm kicks in to use these descriptions during the final prediction and provides human-understandable explanations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks Artificial Neural Network Based Fault Diagnostic System for Wind Turbines Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture A New Fast Walsh Hadamard Transform Spread UW-Optical-OFDM Waveform Indoor Localization with Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1