{"title":"考虑范德华力的影响,增大了静电驱动细长纳米悬臂梁的稳定静态行程范围","authors":"Kedar S. Pakhare, R. Shimpi, P. Guruprasad","doi":"10.1080/15502287.2023.2186971","DOIUrl":null,"url":null,"abstract":"Abstract The van der Waals (vdW) force, along with the electrostatic force and the first-order fringing field effect, act on the electrostatically actuated nano-cantilever (EANC) when the gap between the deformable electrode and the stationary electrode is less than 20 nanometres. Because of the vdW force, the EANC can undergo a pull-in phenomenon even without the electrostatic force when the nano-cantilever length exceeds its detachment length. The vdW force also results in a significant reduction in static pull-in instability parameters of the slender EANC compared to corresponding parameters obtained when this force is absent. This paper aims to augment the stable static travel range (i.e., the pull-in displacement) of the aforementioned EANC having a length close to its detachment length by varying the beam width. The beam width is assumed to vary in linear and parabolic manners and is controlled using a width variation parameter in each case. The governing equation of the Bernoulli-Euler beam theory and the Galerkin’s technique are utilised to obtain the weighted residual statement (GWRS). The GWRS is utilised to obtain static pull-in instability parameters of referential prismatic and variable-width EANCs. Pull-in instability parameters of variable-width EANCs, for various values of width variation parameters and the initial gap between electrodes, have been obtained. The aforementioned results have been validated with corresponding results obtained by three-dimensional finite element simulations performed using COMSOL Multiphysics®. Compared to the referential prismatic EANC, a significant augmentation in the pull-in displacement of the variable-width EANC has been obtained.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmentation of the stable static travel range of electrostatically actuated slender nano-cantilevers by accounting for the influence of the van der Waals force\",\"authors\":\"Kedar S. Pakhare, R. Shimpi, P. Guruprasad\",\"doi\":\"10.1080/15502287.2023.2186971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The van der Waals (vdW) force, along with the electrostatic force and the first-order fringing field effect, act on the electrostatically actuated nano-cantilever (EANC) when the gap between the deformable electrode and the stationary electrode is less than 20 nanometres. Because of the vdW force, the EANC can undergo a pull-in phenomenon even without the electrostatic force when the nano-cantilever length exceeds its detachment length. The vdW force also results in a significant reduction in static pull-in instability parameters of the slender EANC compared to corresponding parameters obtained when this force is absent. This paper aims to augment the stable static travel range (i.e., the pull-in displacement) of the aforementioned EANC having a length close to its detachment length by varying the beam width. The beam width is assumed to vary in linear and parabolic manners and is controlled using a width variation parameter in each case. The governing equation of the Bernoulli-Euler beam theory and the Galerkin’s technique are utilised to obtain the weighted residual statement (GWRS). The GWRS is utilised to obtain static pull-in instability parameters of referential prismatic and variable-width EANCs. Pull-in instability parameters of variable-width EANCs, for various values of width variation parameters and the initial gap between electrodes, have been obtained. The aforementioned results have been validated with corresponding results obtained by three-dimensional finite element simulations performed using COMSOL Multiphysics®. Compared to the referential prismatic EANC, a significant augmentation in the pull-in displacement of the variable-width EANC has been obtained.\",\"PeriodicalId\":315058,\"journal\":{\"name\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15502287.2023.2186971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2023.2186971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Augmentation of the stable static travel range of electrostatically actuated slender nano-cantilevers by accounting for the influence of the van der Waals force
Abstract The van der Waals (vdW) force, along with the electrostatic force and the first-order fringing field effect, act on the electrostatically actuated nano-cantilever (EANC) when the gap between the deformable electrode and the stationary electrode is less than 20 nanometres. Because of the vdW force, the EANC can undergo a pull-in phenomenon even without the electrostatic force when the nano-cantilever length exceeds its detachment length. The vdW force also results in a significant reduction in static pull-in instability parameters of the slender EANC compared to corresponding parameters obtained when this force is absent. This paper aims to augment the stable static travel range (i.e., the pull-in displacement) of the aforementioned EANC having a length close to its detachment length by varying the beam width. The beam width is assumed to vary in linear and parabolic manners and is controlled using a width variation parameter in each case. The governing equation of the Bernoulli-Euler beam theory and the Galerkin’s technique are utilised to obtain the weighted residual statement (GWRS). The GWRS is utilised to obtain static pull-in instability parameters of referential prismatic and variable-width EANCs. Pull-in instability parameters of variable-width EANCs, for various values of width variation parameters and the initial gap between electrodes, have been obtained. The aforementioned results have been validated with corresponding results obtained by three-dimensional finite element simulations performed using COMSOL Multiphysics®. Compared to the referential prismatic EANC, a significant augmentation in the pull-in displacement of the variable-width EANC has been obtained.