代价敏感模式识别中分类器和分类器集成的进化优化

G. Schaefer
{"title":"代价敏感模式识别中分类器和分类器集成的进化优化","authors":"G. Schaefer","doi":"10.1109/SACI.2013.6608995","DOIUrl":null,"url":null,"abstract":"Pattern recognition problems occur in many fields and hence effective classification algorithms are the focus of much research. In various circumstances not classification accuracy but misclassification cost minimsation is the primary goal leading to the development of cost-sensitive classification algorithms. In this paper, we show how evolutionary algorithms, in particular genetic algorithms (GAs), can be employed optimise to cost-sensitive classifiers and classifier ensembles. In particular, we discuss how GAs can be employed to derive a compact set of fuzzy if-then rules with an embedded cost term, and how GAs are able to perform simultaneous classifier selection and fusion for ensemble classifiers.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"402 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolutionary optimisation of classifiers and classifier ensembles for cost-sensitive pattern recognition\",\"authors\":\"G. Schaefer\",\"doi\":\"10.1109/SACI.2013.6608995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern recognition problems occur in many fields and hence effective classification algorithms are the focus of much research. In various circumstances not classification accuracy but misclassification cost minimsation is the primary goal leading to the development of cost-sensitive classification algorithms. In this paper, we show how evolutionary algorithms, in particular genetic algorithms (GAs), can be employed optimise to cost-sensitive classifiers and classifier ensembles. In particular, we discuss how GAs can be employed to derive a compact set of fuzzy if-then rules with an embedded cost term, and how GAs are able to perform simultaneous classifier selection and fusion for ensemble classifiers.\",\"PeriodicalId\":304729,\"journal\":{\"name\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"402 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2013.6608995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

模式识别问题出现在许多领域,因此有效的分类算法是许多研究的焦点。在各种情况下,导致代价敏感分类算法发展的主要目标不是分类精度,而是错误分类成本的最小化。在本文中,我们展示了如何进化算法,特别是遗传算法(GAs),可以优化用于成本敏感分类器和分类器集成。特别是,我们讨论了如何使用GAs来导出一组紧凑的带有嵌入代价项的模糊if-then规则,以及GAs如何能够为集成分类器执行同步分类器选择和融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary optimisation of classifiers and classifier ensembles for cost-sensitive pattern recognition
Pattern recognition problems occur in many fields and hence effective classification algorithms are the focus of much research. In various circumstances not classification accuracy but misclassification cost minimsation is the primary goal leading to the development of cost-sensitive classification algorithms. In this paper, we show how evolutionary algorithms, in particular genetic algorithms (GAs), can be employed optimise to cost-sensitive classifiers and classifier ensembles. In particular, we discuss how GAs can be employed to derive a compact set of fuzzy if-then rules with an embedded cost term, and how GAs are able to perform simultaneous classifier selection and fusion for ensemble classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
V/f control strategy with constant power factor for SPMSM drives, with experiments Spline filtering in accordance to ISO/TS 16610: ANSI C-code for engineers HITS based network algorithm for evaluating the professional skills of wine tasters Performance evaluation of a face detection algorithm running on general purpose operating systems Tumor growth model identification and analysis in case of C38 colon adenocarcinoma and B16 melanoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1