稀疏模型的空中统计估计

Chuan-Zheng Lee, L. P. Barnes, Wenhao Zhan, Ayfer Özgür
{"title":"稀疏模型的空中统计估计","authors":"Chuan-Zheng Lee, L. P. Barnes, Wenhao Zhan, Ayfer Özgür","doi":"10.1109/GLOBECOM46510.2021.9685768","DOIUrl":null,"url":null,"abstract":"We propose schemes for minimax statistical estimation of sparse parameter or observation vectors over a Gaussian multiple-access channel (MAC) under squared error loss, using techniques from statistics, compressed sensing and wireless communication. These “analog” schemes exploit the superposition inherent in the Gaussian MAC, using compressed sensing to reduce the number of channel uses needed. For the sparse Gaussian location and sparse product Bernoulli models, we derive expressions for risk in terms of the numbers of nodes, parameters, channel uses and nonzero entries (sparsity). We show that they offer exponential improvements over existing lower bounds for risk in “digital” schemes that assume nodes to transmit bits errorlessly at the Shannon capacity. This shows that analog schemes that design estimation and communication jointly can efficiently exploit the inherent sparsity in high-dimensional models and observations, and provide drastic improvements over digital schemes that separate source and channel coding in this context.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Over-the-Air Statistical Estimation of Sparse Models\",\"authors\":\"Chuan-Zheng Lee, L. P. Barnes, Wenhao Zhan, Ayfer Özgür\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose schemes for minimax statistical estimation of sparse parameter or observation vectors over a Gaussian multiple-access channel (MAC) under squared error loss, using techniques from statistics, compressed sensing and wireless communication. These “analog” schemes exploit the superposition inherent in the Gaussian MAC, using compressed sensing to reduce the number of channel uses needed. For the sparse Gaussian location and sparse product Bernoulli models, we derive expressions for risk in terms of the numbers of nodes, parameters, channel uses and nonzero entries (sparsity). We show that they offer exponential improvements over existing lower bounds for risk in “digital” schemes that assume nodes to transmit bits errorlessly at the Shannon capacity. This shows that analog schemes that design estimation and communication jointly can efficiently exploit the inherent sparsity in high-dimensional models and observations, and provide drastic improvements over digital schemes that separate source and channel coding in this context.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了在平方误差损失下高斯多址信道(MAC)上稀疏参数或观测向量的极大极小统计估计方案,使用统计学、压缩感知和无线通信技术。这些“模拟”方案利用高斯MAC中固有的叠加性,使用压缩感知来减少所需的信道数量。对于稀疏高斯位置和稀疏积伯努利模型,我们导出了节点数量、参数、通道使用和非零条目(稀疏性)的风险表达式。我们表明,它们在“数字”方案中提供了比现有风险下限指数级的改进,这些方案假设节点在香农容量下无误地传输比特。这表明联合设计估计和通信的模拟方案可以有效地利用高维模型和观测的固有稀疏性,并且在这种情况下比分离源和信道编码的数字方案提供了巨大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Over-the-Air Statistical Estimation of Sparse Models
We propose schemes for minimax statistical estimation of sparse parameter or observation vectors over a Gaussian multiple-access channel (MAC) under squared error loss, using techniques from statistics, compressed sensing and wireless communication. These “analog” schemes exploit the superposition inherent in the Gaussian MAC, using compressed sensing to reduce the number of channel uses needed. For the sparse Gaussian location and sparse product Bernoulli models, we derive expressions for risk in terms of the numbers of nodes, parameters, channel uses and nonzero entries (sparsity). We show that they offer exponential improvements over existing lower bounds for risk in “digital” schemes that assume nodes to transmit bits errorlessly at the Shannon capacity. This shows that analog schemes that design estimation and communication jointly can efficiently exploit the inherent sparsity in high-dimensional models and observations, and provide drastic improvements over digital schemes that separate source and channel coding in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Energy Trading Scheme for Dynamic Charging of Electric Vehicles Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes A Fast and Scalable Resource Allocation Scheme for End-to-End Network Slices Modelling of Multi-Tier Handover in LiFi Networks Enabling Efficient Scheduling Policy in Intelligent Reflecting Surface Aided Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1