真假:使用监督机器学习算法进行内在分析

Ameyaa Biwalkar, Ashwini Rao, K. Shah
{"title":"真假:使用监督机器学习算法进行内在分析","authors":"Ameyaa Biwalkar, Ashwini Rao, K. Shah","doi":"10.1109/I-SMAC52330.2021.9640675","DOIUrl":null,"url":null,"abstract":"Different platforms of information data semantics are affected by Fake news in the recent years. Due to the inherent writing style and propagation speed of such false information, it has been difficult to pinpoint them from the true ones. The related work in the field makes use of various supervised as well as unsupervised machine-learning algorithms to classify and detect fake news. This paper provides an in-depth overview of the algorithms that are being used for detection. The paper also provides an analysis of notable algorithms on two datasets: Source based Fake News classification and Fake and Real News dataset. The results show that supervised algorithms with proper embedding and vectorizer models can provide great accuracies. The experimentation output shows the effectiveness of the proposed architecture.","PeriodicalId":178783,"journal":{"name":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real or Fake: An intrinsic analysis using supervised machine learning algorithms\",\"authors\":\"Ameyaa Biwalkar, Ashwini Rao, K. Shah\",\"doi\":\"10.1109/I-SMAC52330.2021.9640675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different platforms of information data semantics are affected by Fake news in the recent years. Due to the inherent writing style and propagation speed of such false information, it has been difficult to pinpoint them from the true ones. The related work in the field makes use of various supervised as well as unsupervised machine-learning algorithms to classify and detect fake news. This paper provides an in-depth overview of the algorithms that are being used for detection. The paper also provides an analysis of notable algorithms on two datasets: Source based Fake News classification and Fake and Real News dataset. The results show that supervised algorithms with proper embedding and vectorizer models can provide great accuracies. The experimentation output shows the effectiveness of the proposed architecture.\",\"PeriodicalId\":178783,\"journal\":{\"name\":\"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SMAC52330.2021.9640675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC52330.2021.9640675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,不同的信息数据语义平台受到假新闻的影响。由于这些虚假信息固有的写作风格和传播速度,很难将其与真实信息区分开来。该领域的相关工作利用各种有监督和无监督的机器学习算法来分类和检测假新闻。本文提供了用于检测的算法的深入概述。本文还分析了两个数据集上的著名算法:基于来源的假新闻分类和假新闻和真实新闻数据集。结果表明,采用适当的嵌入和矢量化模型的监督算法可以提供较高的精度。实验结果表明了该结构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real or Fake: An intrinsic analysis using supervised machine learning algorithms
Different platforms of information data semantics are affected by Fake news in the recent years. Due to the inherent writing style and propagation speed of such false information, it has been difficult to pinpoint them from the true ones. The related work in the field makes use of various supervised as well as unsupervised machine-learning algorithms to classify and detect fake news. This paper provides an in-depth overview of the algorithms that are being used for detection. The paper also provides an analysis of notable algorithms on two datasets: Source based Fake News classification and Fake and Real News dataset. The results show that supervised algorithms with proper embedding and vectorizer models can provide great accuracies. The experimentation output shows the effectiveness of the proposed architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Modeling of Fast Face Recognition Against Age Disturbance under Deep Learning Design of IoT Network using Deep Learning-based Model for Anomaly Detection Analysis of the Impact of Blockchain and Net Technology on the Financial Governance of Internet Enterprises Affective Music Player for Multiple Emotion Recognition Using Facial Expressions with SVM A Deep Learning technology based covid-19 prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1