基于一类分类方法的自发轻弹反应屏幕解锁

Yoshitomo Matsubara, H. Nishimura, T. Samura, Hiroyuki Yoshimoto, Ryohei Tanimoto
{"title":"基于一类分类方法的自发轻弹反应屏幕解锁","authors":"Yoshitomo Matsubara, H. Nishimura, T. Samura, Hiroyuki Yoshimoto, Ryohei Tanimoto","doi":"10.1109/ICMLA.2016.0134","DOIUrl":null,"url":null,"abstract":"Physical biometrics technologies are introduced to the login process on smart devices. However, many of them have several disadvantages: requirement of embedding special sensor, limited environment to use and copy of key information for authentication. In this research, we proposed a new biometrics technique which can capture user's inimitable behavioral features in his/her spontaneous flick reactions on a touch-screen display for unlocking the device when it wakes up. For practical use of the technique, we adopted one-class classification approaches and they achieved about 1-2% EERs for 2500 samples from 50 subjects.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"409 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Screen Unlocking by Spontaneous Flick Reactions with One-Class Classification Approaches\",\"authors\":\"Yoshitomo Matsubara, H. Nishimura, T. Samura, Hiroyuki Yoshimoto, Ryohei Tanimoto\",\"doi\":\"10.1109/ICMLA.2016.0134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical biometrics technologies are introduced to the login process on smart devices. However, many of them have several disadvantages: requirement of embedding special sensor, limited environment to use and copy of key information for authentication. In this research, we proposed a new biometrics technique which can capture user's inimitable behavioral features in his/her spontaneous flick reactions on a touch-screen display for unlocking the device when it wakes up. For practical use of the technique, we adopted one-class classification approaches and they achieved about 1-2% EERs for 2500 samples from 50 subjects.\",\"PeriodicalId\":356182,\"journal\":{\"name\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"409 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2016.0134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将物理生物识别技术引入智能设备的登录过程。但是,许多方法都存在嵌入特殊传感器的要求、使用环境的限制以及需要复制关键信息进行认证等缺点。在这项研究中,我们提出了一种新的生物识别技术,该技术可以捕捉用户在触摸屏显示器上的自发轻拍反应中不可模仿的行为特征,以便在设备唤醒时解锁设备。对于该技术的实际应用,我们采用了一类分类方法,他们对50名受试者的2500个样本实现了约1-2%的EERs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Screen Unlocking by Spontaneous Flick Reactions with One-Class Classification Approaches
Physical biometrics technologies are introduced to the login process on smart devices. However, many of them have several disadvantages: requirement of embedding special sensor, limited environment to use and copy of key information for authentication. In this research, we proposed a new biometrics technique which can capture user's inimitable behavioral features in his/her spontaneous flick reactions on a touch-screen display for unlocking the device when it wakes up. For practical use of the technique, we adopted one-class classification approaches and they achieved about 1-2% EERs for 2500 samples from 50 subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Modelling and Pattern Detection Approach for the First-Episode Psychosis Associated to Cannabis Use An Effective and Efficient Similarity-Matrix-Based Algorithm for Clustering Big Mobile Social Data Time Series Classification Using Time Warping Invariant Echo State Networks Improved Time Series Classification with Representation Diversity and SVM Android Malware Detection: Building Useful Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1