在用户关注误报警的情况下,追求对正数据的最佳检测

Cong Teng, Liyan Song
{"title":"在用户关注误报警的情况下,追求对正数据的最佳检测","authors":"Cong Teng, Liyan Song","doi":"10.1109/icaci55529.2022.9837710","DOIUrl":null,"url":null,"abstract":"Just-In-Time Software Defect Predict (JIT-SDP) has been a popular research topic in the literature of software engineering. In many practical scenarios, software engineers would prefer to pursue the best detection of defect-inducing software changes under the concern of a given false alarm tolerance. However, there have been only two related studies in the Machine Learning (ML) community that are capable of tackling this constraint optimization problem. This paper aims to study how can we utilize the existing ML methods for addressing the research problem in JIT-SDP and how well do they perform on it. Considering the fact that the objective and the constraint are not differentiable, a Differential Evolution (DE) algorithm is by nature suitable for tackling this research problem. Thus, this paper also aims to investigate how can we propose a novel DE algorithm to better address the constraint optimization problem in JIT-SDP. With these aims in mind, this paper adapts the ML methods with a spared validation set to facilitate the constraint learning process, and it also proposes an advanced DE algorithm with an adaptive constraint to pursue the best detection of the positive class under a given false alarm. Experimental results with 10 real-world data sets from the domain of software defect prediction demonstrate that our proposed DE based approach can achieve generally better performance on the constraint optimization problem, deriving better classification models in terms of both objective and the constraint.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Pursuit of the Best Detection of Positive Data Under User’s Concern on False Alarm\",\"authors\":\"Cong Teng, Liyan Song\",\"doi\":\"10.1109/icaci55529.2022.9837710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Just-In-Time Software Defect Predict (JIT-SDP) has been a popular research topic in the literature of software engineering. In many practical scenarios, software engineers would prefer to pursue the best detection of defect-inducing software changes under the concern of a given false alarm tolerance. However, there have been only two related studies in the Machine Learning (ML) community that are capable of tackling this constraint optimization problem. This paper aims to study how can we utilize the existing ML methods for addressing the research problem in JIT-SDP and how well do they perform on it. Considering the fact that the objective and the constraint are not differentiable, a Differential Evolution (DE) algorithm is by nature suitable for tackling this research problem. Thus, this paper also aims to investigate how can we propose a novel DE algorithm to better address the constraint optimization problem in JIT-SDP. With these aims in mind, this paper adapts the ML methods with a spared validation set to facilitate the constraint learning process, and it also proposes an advanced DE algorithm with an adaptive constraint to pursue the best detection of the positive class under a given false alarm. Experimental results with 10 real-world data sets from the domain of software defect prediction demonstrate that our proposed DE based approach can achieve generally better performance on the constraint optimization problem, deriving better classification models in terms of both objective and the constraint.\",\"PeriodicalId\":412347,\"journal\":{\"name\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icaci55529.2022.9837710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实时软件缺陷预测(JIT-SDP)一直是软件工程领域的研究热点。在许多实际场景中,软件工程师更倾向于在给定假警报容忍度的情况下,追求对导致缺陷的软件变更的最佳检测。然而,在机器学习(ML)社区中,只有两个相关的研究能够解决这个约束优化问题。本文旨在研究如何利用现有的机器学习方法来解决JIT-SDP中的研究问题,以及它们在JIT-SDP中的表现如何。考虑到目标和约束不可微,差分进化(DE)算法本质上适合于解决这一研究问题。因此,本文还旨在研究如何提出一种新的DE算法来更好地解决JIT-SDP中的约束优化问题。考虑到这些目标,本文采用了具有备用验证集的ML方法来促进约束学习过程,并提出了一种具有自适应约束的高级DE算法,以追求在给定虚警情况下对正类的最佳检测。基于软件缺陷预测领域的10个真实数据集的实验结果表明,我们提出的基于DE的方法在约束优化问题上取得了更好的性能,在目标和约束方面都得到了更好的分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Pursuit of the Best Detection of Positive Data Under User’s Concern on False Alarm
Just-In-Time Software Defect Predict (JIT-SDP) has been a popular research topic in the literature of software engineering. In many practical scenarios, software engineers would prefer to pursue the best detection of defect-inducing software changes under the concern of a given false alarm tolerance. However, there have been only two related studies in the Machine Learning (ML) community that are capable of tackling this constraint optimization problem. This paper aims to study how can we utilize the existing ML methods for addressing the research problem in JIT-SDP and how well do they perform on it. Considering the fact that the objective and the constraint are not differentiable, a Differential Evolution (DE) algorithm is by nature suitable for tackling this research problem. Thus, this paper also aims to investigate how can we propose a novel DE algorithm to better address the constraint optimization problem in JIT-SDP. With these aims in mind, this paper adapts the ML methods with a spared validation set to facilitate the constraint learning process, and it also proposes an advanced DE algorithm with an adaptive constraint to pursue the best detection of the positive class under a given false alarm. Experimental results with 10 real-world data sets from the domain of software defect prediction demonstrate that our proposed DE based approach can achieve generally better performance on the constraint optimization problem, deriving better classification models in terms of both objective and the constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speed Estimation of Video Target Based on Siamese Convolutional Network and Kalman Filtering Aspect Term Extraction and Categorization for Chinese MOOC Reviews A Global Harmony Search Algorithm Based on Tent Chaos Map and Elite Reverse Learning An Improved Superpixel-based Fuzzy C-Means Method for Complex Picture Segmentation Tasks New Results on Finite-Time Synchronization of Delayed Fuzzy Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1