{"title":"煤油蒸气在具有端向风壁的圆柱体周围的超音速流动中着火","authors":"Y. Tunik, G. Gerasimov","doi":"10.33257/PHCHGD.19.2.742","DOIUrl":null,"url":null,"abstract":"The detonation capacity of kerosene vapor is numerically studied in supersonic flow around a circular cylinder with an end windward wall. The model of kerosene combustion in the air takes into account 68 reactions for 44 components. Its testing is made by the way of comparison with the available calculated and experimental data on the ignition delay time under adiabatic conditions at a constant density. The mathematical model flow past cylinder is based on twodimensional non-stationary Euler equations for a multi-component reacting gas. The enthalpy and entropy of the initial mixture and combustion products are determined by polynomials from the NASA base. Calculations are performed on the basis of the Godunov finite-difference scheme and its modification of increased accuracy. The results allow justifying the parameters of the nozzle with a central body for a supersonic direct-flow chamber with detonative combustion of kerosene.","PeriodicalId":309290,"journal":{"name":"Physical-Chemical Kinetics in Gas Dynamics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ignition of kerosene vapor in supersonic flow around a cylinder with an end windward wall\",\"authors\":\"Y. Tunik, G. Gerasimov\",\"doi\":\"10.33257/PHCHGD.19.2.742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detonation capacity of kerosene vapor is numerically studied in supersonic flow around a circular cylinder with an end windward wall. The model of kerosene combustion in the air takes into account 68 reactions for 44 components. Its testing is made by the way of comparison with the available calculated and experimental data on the ignition delay time under adiabatic conditions at a constant density. The mathematical model flow past cylinder is based on twodimensional non-stationary Euler equations for a multi-component reacting gas. The enthalpy and entropy of the initial mixture and combustion products are determined by polynomials from the NASA base. Calculations are performed on the basis of the Godunov finite-difference scheme and its modification of increased accuracy. The results allow justifying the parameters of the nozzle with a central body for a supersonic direct-flow chamber with detonative combustion of kerosene.\",\"PeriodicalId\":309290,\"journal\":{\"name\":\"Physical-Chemical Kinetics in Gas Dynamics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical-Chemical Kinetics in Gas Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33257/PHCHGD.19.2.742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical-Chemical Kinetics in Gas Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33257/PHCHGD.19.2.742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ignition of kerosene vapor in supersonic flow around a cylinder with an end windward wall
The detonation capacity of kerosene vapor is numerically studied in supersonic flow around a circular cylinder with an end windward wall. The model of kerosene combustion in the air takes into account 68 reactions for 44 components. Its testing is made by the way of comparison with the available calculated and experimental data on the ignition delay time under adiabatic conditions at a constant density. The mathematical model flow past cylinder is based on twodimensional non-stationary Euler equations for a multi-component reacting gas. The enthalpy and entropy of the initial mixture and combustion products are determined by polynomials from the NASA base. Calculations are performed on the basis of the Godunov finite-difference scheme and its modification of increased accuracy. The results allow justifying the parameters of the nozzle with a central body for a supersonic direct-flow chamber with detonative combustion of kerosene.