Hiromitsu Nishimura, Masayoshi Tsutsumi, M. Maruyama, H. Miyao, Y. Nakano
{"title":"基于特征提取滤波器的集成一维hmm离线手写字符识别","authors":"Hiromitsu Nishimura, Masayoshi Tsutsumi, M. Maruyama, H. Miyao, Y. Nakano","doi":"10.1109/ICDAR.2001.953824","DOIUrl":null,"url":null,"abstract":"The purpose of our research is to improve the recognition rate of an off-line handwritten character recognition system using HMM (hidden Markov model), so that we can use the system for practical application. Due to the insufficient recognition rate of ID HMM character recognition systems and the requirement for a huge number of learning samples to construct 2D HMM character recognition systems, HMM-based character recognition systems have not yet achieved sufficient recognition performance for practical use. In this research, we propose the character recognition method that integrates 4 simply structured 1D HMMs all of which are based on feature extraction using linear filters. The results of our evaluation experiment using the Hand-Printed Character Database (ETL6) showed that the first rank recognition rate of the test samples was 98.5% and that the cumulative recognition rate of top 3 candidates was 99.3%. Although our method is relatively easy to implement, it can work even better than 2D HMM method. These results show the proposed method is very effective.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Off-line hand-written character recognition using integrated 1D HMMs based on feature extraction filters\",\"authors\":\"Hiromitsu Nishimura, Masayoshi Tsutsumi, M. Maruyama, H. Miyao, Y. Nakano\",\"doi\":\"10.1109/ICDAR.2001.953824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of our research is to improve the recognition rate of an off-line handwritten character recognition system using HMM (hidden Markov model), so that we can use the system for practical application. Due to the insufficient recognition rate of ID HMM character recognition systems and the requirement for a huge number of learning samples to construct 2D HMM character recognition systems, HMM-based character recognition systems have not yet achieved sufficient recognition performance for practical use. In this research, we propose the character recognition method that integrates 4 simply structured 1D HMMs all of which are based on feature extraction using linear filters. The results of our evaluation experiment using the Hand-Printed Character Database (ETL6) showed that the first rank recognition rate of the test samples was 98.5% and that the cumulative recognition rate of top 3 candidates was 99.3%. Although our method is relatively easy to implement, it can work even better than 2D HMM method. These results show the proposed method is very effective.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Off-line hand-written character recognition using integrated 1D HMMs based on feature extraction filters
The purpose of our research is to improve the recognition rate of an off-line handwritten character recognition system using HMM (hidden Markov model), so that we can use the system for practical application. Due to the insufficient recognition rate of ID HMM character recognition systems and the requirement for a huge number of learning samples to construct 2D HMM character recognition systems, HMM-based character recognition systems have not yet achieved sufficient recognition performance for practical use. In this research, we propose the character recognition method that integrates 4 simply structured 1D HMMs all of which are based on feature extraction using linear filters. The results of our evaluation experiment using the Hand-Printed Character Database (ETL6) showed that the first rank recognition rate of the test samples was 98.5% and that the cumulative recognition rate of top 3 candidates was 99.3%. Although our method is relatively easy to implement, it can work even better than 2D HMM method. These results show the proposed method is very effective.