{"title":"人类行为努力的识别:自适应三模PCA框架","authors":"James W. Davis, Hui Gao","doi":"10.1109/ICCV.2003.1238662","DOIUrl":null,"url":null,"abstract":"We present a computational framework capable of labeling the effort of an action corresponding to the perceived level of exertion by the performer (low - high). The approach initially factorizes examples (at different efforts) of an action into its three-mode principal components to reduce the dimensionality. Then a learning phase is introduced to compute expressive-feature weights to adjust the model's estimation of effort to conform to given perceptual labels for the examples. Experiments are demonstrated recognizing the efforts of a person carrying bags of different weight and for multiple people walking at different paces.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Recognizing human action efforts: an adaptive three-mode PCA framework\",\"authors\":\"James W. Davis, Hui Gao\",\"doi\":\"10.1109/ICCV.2003.1238662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a computational framework capable of labeling the effort of an action corresponding to the perceived level of exertion by the performer (low - high). The approach initially factorizes examples (at different efforts) of an action into its three-mode principal components to reduce the dimensionality. Then a learning phase is introduced to compute expressive-feature weights to adjust the model's estimation of effort to conform to given perceptual labels for the examples. Experiments are demonstrated recognizing the efforts of a person carrying bags of different weight and for multiple people walking at different paces.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recognizing human action efforts: an adaptive three-mode PCA framework
We present a computational framework capable of labeling the effort of an action corresponding to the perceived level of exertion by the performer (low - high). The approach initially factorizes examples (at different efforts) of an action into its three-mode principal components to reduce the dimensionality. Then a learning phase is introduced to compute expressive-feature weights to adjust the model's estimation of effort to conform to given perceptual labels for the examples. Experiments are demonstrated recognizing the efforts of a person carrying bags of different weight and for multiple people walking at different paces.