基于知识的物体检测推理网络

Huigang Zhang, Liuan Wang, Jun Sun
{"title":"基于知识的物体检测推理网络","authors":"Huigang Zhang, Liuan Wang, Jun Sun","doi":"10.1109/ICIP42928.2021.9506228","DOIUrl":null,"url":null,"abstract":"The mainstream object detection algorithms rely on recognizing object instances individually, but do not consider the high-level relationship among objects in context. This will inevitably lead to biased detection results, due to the lack of commonsense knowledge that humans often use to assist the task for object identification. In this paper, we present a novel reasoning module to endow the current detection systems with the power of commonsense knowledge. Specifically, we use graph attention network (GAT) to represent the knowledge among objects. The knowledge covers visual and semantic relations. Through the iterative update of GAT, the object features can be enriched. Experiments on the COCO detection benchmark indicate that our knowledge-based reasoning network has achieved consistent improvements upon various CNN detectors. We achieved 1.9 and 1.8 points higher Average Precision (AP) than Faster-RCNN and Mask-RCNN respectively, when using ResNet50-FPN as backbone.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"493 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Knowledge-Based Reasoning Network For Object Detection\",\"authors\":\"Huigang Zhang, Liuan Wang, Jun Sun\",\"doi\":\"10.1109/ICIP42928.2021.9506228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mainstream object detection algorithms rely on recognizing object instances individually, but do not consider the high-level relationship among objects in context. This will inevitably lead to biased detection results, due to the lack of commonsense knowledge that humans often use to assist the task for object identification. In this paper, we present a novel reasoning module to endow the current detection systems with the power of commonsense knowledge. Specifically, we use graph attention network (GAT) to represent the knowledge among objects. The knowledge covers visual and semantic relations. Through the iterative update of GAT, the object features can be enriched. Experiments on the COCO detection benchmark indicate that our knowledge-based reasoning network has achieved consistent improvements upon various CNN detectors. We achieved 1.9 and 1.8 points higher Average Precision (AP) than Faster-RCNN and Mask-RCNN respectively, when using ResNet50-FPN as backbone.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"493 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

主流的目标检测算法依赖于单独识别目标实例,而没有考虑上下文中对象之间的高级关系。这将不可避免地导致有偏见的检测结果,由于缺乏常识性的知识,人类经常用来协助任务的对象识别。本文提出了一种新的推理模块,使现有的检测系统具有常识性知识的能力。具体来说,我们使用图注意网络(GAT)来表示对象之间的知识。这些知识涵盖了视觉和语义关系。通过GAT的迭代更新,可以丰富目标特征。在COCO检测基准上的实验表明,我们基于知识的推理网络在各种CNN检测器上取得了一致的改进。当使用ResNet50-FPN作为骨干网时,我们的平均精度(AP)分别比Faster-RCNN和Mask-RCNN高1.9和1.8分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge-Based Reasoning Network For Object Detection
The mainstream object detection algorithms rely on recognizing object instances individually, but do not consider the high-level relationship among objects in context. This will inevitably lead to biased detection results, due to the lack of commonsense knowledge that humans often use to assist the task for object identification. In this paper, we present a novel reasoning module to endow the current detection systems with the power of commonsense knowledge. Specifically, we use graph attention network (GAT) to represent the knowledge among objects. The knowledge covers visual and semantic relations. Through the iterative update of GAT, the object features can be enriched. Experiments on the COCO detection benchmark indicate that our knowledge-based reasoning network has achieved consistent improvements upon various CNN detectors. We achieved 1.9 and 1.8 points higher Average Precision (AP) than Faster-RCNN and Mask-RCNN respectively, when using ResNet50-FPN as backbone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1