用近红外光谱和人工神经网络鉴别果子狸咖啡

Edwin R. Arboleda
{"title":"用近红外光谱和人工神经网络鉴别果子狸咖啡","authors":"Edwin R. Arboleda","doi":"10.19101/ijacr.2018.839007","DOIUrl":null,"url":null,"abstract":"Civet coffee is regarded as the most expensive coffee in the world. Owing to its high price the conventional method of harvesting civet coffee in the wild has been replaced by a farming method, wherein the wild civet cats are being captured, caged, and then force-fed with ripe, hand-picked, coffee cherries. This is contrary to the production of wild civet coffee from the ripest and sweetest coffee cherries, carefully picked by the civet cat. As the wild civet coffee is quite hard to obtain, most of the civet coffee commercially sold as authentic civet coffee is actually from a caged civet cat. Traders and consumers have no way of differentiating the civet coffee from other types of coffee. This study aimed to differentiate caged civet coffee beans from ordinary green coffee beans. The technique used was the near infrared spectroscopy (NIRS) as it is nondestructive and can generate quick results. A total of 218 samples were scanned, which generated absorbance in the entire 780 wavelength capacity of the Cavite State University Indium, Gallium and Arsenic (CvSU InGaAs)-based NIR instrument, ranging from 904 to 1684 nanometres (nm). A total of 170,040 spectra were generated. The average spectral absorbance’s having major differences between the two groups, were chosen, which are 907nm, 1088 nm, 1540 nm and 1650 nm, respectively. Out of 218 samples , 130 samples were used as training data, 40 samples as testing data, and the remaining 48 samples for validation purposes. The training data were subjected to the 4 layers, 15 neurons feed forward back propagation artificial neural network (FFBPANN) for training. Classification scores of 95% to 100% were achieved. Using the combined NIRS and FFBPANN, the civet coffee can be successfully discriminated from coffee beans not eaten by a civet.","PeriodicalId":273530,"journal":{"name":"International Journal of Advanced Computer Research","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Discrimination of civet coffee using near infrared spectroscopy and artificial neural network\",\"authors\":\"Edwin R. Arboleda\",\"doi\":\"10.19101/ijacr.2018.839007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Civet coffee is regarded as the most expensive coffee in the world. Owing to its high price the conventional method of harvesting civet coffee in the wild has been replaced by a farming method, wherein the wild civet cats are being captured, caged, and then force-fed with ripe, hand-picked, coffee cherries. This is contrary to the production of wild civet coffee from the ripest and sweetest coffee cherries, carefully picked by the civet cat. As the wild civet coffee is quite hard to obtain, most of the civet coffee commercially sold as authentic civet coffee is actually from a caged civet cat. Traders and consumers have no way of differentiating the civet coffee from other types of coffee. This study aimed to differentiate caged civet coffee beans from ordinary green coffee beans. The technique used was the near infrared spectroscopy (NIRS) as it is nondestructive and can generate quick results. A total of 218 samples were scanned, which generated absorbance in the entire 780 wavelength capacity of the Cavite State University Indium, Gallium and Arsenic (CvSU InGaAs)-based NIR instrument, ranging from 904 to 1684 nanometres (nm). A total of 170,040 spectra were generated. The average spectral absorbance’s having major differences between the two groups, were chosen, which are 907nm, 1088 nm, 1540 nm and 1650 nm, respectively. Out of 218 samples , 130 samples were used as training data, 40 samples as testing data, and the remaining 48 samples for validation purposes. The training data were subjected to the 4 layers, 15 neurons feed forward back propagation artificial neural network (FFBPANN) for training. Classification scores of 95% to 100% were achieved. Using the combined NIRS and FFBPANN, the civet coffee can be successfully discriminated from coffee beans not eaten by a civet.\",\"PeriodicalId\":273530,\"journal\":{\"name\":\"International Journal of Advanced Computer Research\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19101/ijacr.2018.839007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19101/ijacr.2018.839007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

果子狸咖啡被认为是世界上最昂贵的咖啡。由于价格昂贵,传统的在野外采摘果子狸咖啡的方法已经被一种农业方法所取代,在这种方法中,野生的果子狸被捕获,关在笼子里,然后用成熟的,手工采摘的咖啡樱桃强迫喂食。这与由麝香猫精心采摘的最成熟、最甜的咖啡樱桃制成的野生麝香猫咖啡相反。由于野生果子狸咖啡很难获得,大多数商业上作为真正的果子狸咖啡出售的果子狸咖啡实际上是来自笼子里的果子狸猫。商人和消费者无法将麝香猫咖啡与其他类型的咖啡区分开来。本研究旨在区分笼型果子狸咖啡豆与普通生咖啡豆。所使用的技术是近红外光谱(NIRS),因为它是无损的,可以产生快速的结果。共扫描了218个样品,在Cavite州立大学铟镓砷(CvSU InGaAs)基近红外仪器的整个780波长容量内产生吸光度,范围为904至1684纳米(nm)。共生成了170,040个光谱。选取两组差异较大的平均光谱吸光度分别为907nm、1088 nm、1540 nm和1650 nm。218个样本中,130个样本作为训练数据,40个样本作为测试数据,其余48个样本用于验证。训练数据采用4层15个神经元的前馈-反传播人工神经网络(FFBPANN)进行训练。分类评分达到95% ~ 100%。利用近红外光谱和FFBPANN相结合的方法,可以成功地将果子狸咖啡与没有被果子狸食用的咖啡豆区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrimination of civet coffee using near infrared spectroscopy and artificial neural network
Civet coffee is regarded as the most expensive coffee in the world. Owing to its high price the conventional method of harvesting civet coffee in the wild has been replaced by a farming method, wherein the wild civet cats are being captured, caged, and then force-fed with ripe, hand-picked, coffee cherries. This is contrary to the production of wild civet coffee from the ripest and sweetest coffee cherries, carefully picked by the civet cat. As the wild civet coffee is quite hard to obtain, most of the civet coffee commercially sold as authentic civet coffee is actually from a caged civet cat. Traders and consumers have no way of differentiating the civet coffee from other types of coffee. This study aimed to differentiate caged civet coffee beans from ordinary green coffee beans. The technique used was the near infrared spectroscopy (NIRS) as it is nondestructive and can generate quick results. A total of 218 samples were scanned, which generated absorbance in the entire 780 wavelength capacity of the Cavite State University Indium, Gallium and Arsenic (CvSU InGaAs)-based NIR instrument, ranging from 904 to 1684 nanometres (nm). A total of 170,040 spectra were generated. The average spectral absorbance’s having major differences between the two groups, were chosen, which are 907nm, 1088 nm, 1540 nm and 1650 nm, respectively. Out of 218 samples , 130 samples were used as training data, 40 samples as testing data, and the remaining 48 samples for validation purposes. The training data were subjected to the 4 layers, 15 neurons feed forward back propagation artificial neural network (FFBPANN) for training. Classification scores of 95% to 100% were achieved. Using the combined NIRS and FFBPANN, the civet coffee can be successfully discriminated from coffee beans not eaten by a civet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic urban boundary delineation in equatorial regions using SAR imagery: a comprehensive approach with decomposition, morphology, and statistical active contours The barriers and prospects related to big data analytics implementation in public institutions: a systematic review analysis Enhancing data analysis through k-means with foggy centroid selection Hybrid chaotic whale-shark optimization algorithm to improve artificial neural network: application to the skin neglected tropical diseases diagnosis A review and analysis for the text-based classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1