{"title":"利用JMI-res从地面地震资料估计储层弹性参数:全波场方法","authors":"A. Garg, S. Sharma, D. J. Verschuur","doi":"10.3997/2214-4609.201800726","DOIUrl":null,"url":null,"abstract":"Summary Any target-oriented localised inversion scheme for reservoir elastic parameters is as good as the input dataset. Thus, the accuracy of the input dataset i.e. local reflection response or impulse response (virtual source-receiver response) is of utmost importance, especially when the target area is below a complex overburden. In these subsurface settings, the overburden internal multiples and associated transmission imprint obscure the local response, which in turn affects the estimated elastic parameters resolution. Here, we demonstrate a novel process called JMI-res, based on Joint Migration Inversion (JMI), to estimate the reservoir elastic parameters from the surface seismic elastic data for a complex subsurface scenario. In JMI-res, we first obtain the accurate local impulse responses at the target depth level, while correctly accounting for overburden internal multiples and then we apply a localized inversion scheme on the estimated impulse responses to get the reservoir elastic parameters. Moreover, the propagation velocity estimation is an integral part of JMI-res. In this paper, we show that JMI-res provides much more reliable local target impulse responses, thus yielding high-resolution elastic parameters, compared to standard redatuming based on time reversal of recorded data, courtesy of proper handling of internal multiples in the redatuming step.","PeriodicalId":325587,"journal":{"name":"80th EAGE Conference and Exhibition 2018","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reservoir Elastic Parameters Estimation from Surface Seismic Data Using JMI-res: A Full-Wavefield Approach\",\"authors\":\"A. Garg, S. Sharma, D. J. Verschuur\",\"doi\":\"10.3997/2214-4609.201800726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Any target-oriented localised inversion scheme for reservoir elastic parameters is as good as the input dataset. Thus, the accuracy of the input dataset i.e. local reflection response or impulse response (virtual source-receiver response) is of utmost importance, especially when the target area is below a complex overburden. In these subsurface settings, the overburden internal multiples and associated transmission imprint obscure the local response, which in turn affects the estimated elastic parameters resolution. Here, we demonstrate a novel process called JMI-res, based on Joint Migration Inversion (JMI), to estimate the reservoir elastic parameters from the surface seismic elastic data for a complex subsurface scenario. In JMI-res, we first obtain the accurate local impulse responses at the target depth level, while correctly accounting for overburden internal multiples and then we apply a localized inversion scheme on the estimated impulse responses to get the reservoir elastic parameters. Moreover, the propagation velocity estimation is an integral part of JMI-res. In this paper, we show that JMI-res provides much more reliable local target impulse responses, thus yielding high-resolution elastic parameters, compared to standard redatuming based on time reversal of recorded data, courtesy of proper handling of internal multiples in the redatuming step.\",\"PeriodicalId\":325587,\"journal\":{\"name\":\"80th EAGE Conference and Exhibition 2018\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"80th EAGE Conference and Exhibition 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201800726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"80th EAGE Conference and Exhibition 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201800726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reservoir Elastic Parameters Estimation from Surface Seismic Data Using JMI-res: A Full-Wavefield Approach
Summary Any target-oriented localised inversion scheme for reservoir elastic parameters is as good as the input dataset. Thus, the accuracy of the input dataset i.e. local reflection response or impulse response (virtual source-receiver response) is of utmost importance, especially when the target area is below a complex overburden. In these subsurface settings, the overburden internal multiples and associated transmission imprint obscure the local response, which in turn affects the estimated elastic parameters resolution. Here, we demonstrate a novel process called JMI-res, based on Joint Migration Inversion (JMI), to estimate the reservoir elastic parameters from the surface seismic elastic data for a complex subsurface scenario. In JMI-res, we first obtain the accurate local impulse responses at the target depth level, while correctly accounting for overburden internal multiples and then we apply a localized inversion scheme on the estimated impulse responses to get the reservoir elastic parameters. Moreover, the propagation velocity estimation is an integral part of JMI-res. In this paper, we show that JMI-res provides much more reliable local target impulse responses, thus yielding high-resolution elastic parameters, compared to standard redatuming based on time reversal of recorded data, courtesy of proper handling of internal multiples in the redatuming step.