半严格拟凹向量最大化的Pareto集优化及其在随机投资组合选择中的应用

N. D. Vuong, T. N. Thang
{"title":"半严格拟凹向量最大化的Pareto集优化及其在随机投资组合选择中的应用","authors":"N. D. Vuong, T. N. Thang","doi":"10.3934/jimo.2022029","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Optimization over Pareto set of a semistrictly quasiconcave vector maximization problem has many applications in economics and technology but it is a challenging task because of the nonconvexity of objective functions and constraint sets. In this article, we propose a novel approach, which is a Branch-and-Bound algorithm for maximizing a composite function <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\varphi(f(x)) $\\end{document}</tex-math></inline-formula> over the non-dominated solution set of the <inline-formula><tex-math id=\"M2\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula>-objective programming problem, where <inline-formula><tex-math id=\"M3\">\\begin{document}$ p\\geq 2, p \\in \\mathbb{N}, $\\end{document}</tex-math></inline-formula> the function <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\varphi $\\end{document}</tex-math></inline-formula> is increasing and the objective function <inline-formula><tex-math id=\"M5\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> is semistrictly quasiconcave. By utilizing the nice properties of Pareto set to define the partitions of branch and bound scheme, the proposed algorithms are promised to be more accurate and efficient than ones using the multi-objective evolutionary approach such as NSGA-III. This is validated by some computational experiments. The Stochastic Portfolio Selection Problem is chosen as an application of our algorithm, where Sharpe ratio is a semistrictly quasiconcave objective function.</p>","PeriodicalId":347719,"journal":{"name":"Journal of Industrial &amp; Management Optimization","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing over Pareto set of semistrictly quasiconcave vector maximization and application to stochastic portfolio selection\",\"authors\":\"N. D. Vuong, T. N. Thang\",\"doi\":\"10.3934/jimo.2022029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Optimization over Pareto set of a semistrictly quasiconcave vector maximization problem has many applications in economics and technology but it is a challenging task because of the nonconvexity of objective functions and constraint sets. In this article, we propose a novel approach, which is a Branch-and-Bound algorithm for maximizing a composite function <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\varphi(f(x)) $\\\\end{document}</tex-math></inline-formula> over the non-dominated solution set of the <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula>-objective programming problem, where <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ p\\\\geq 2, p \\\\in \\\\mathbb{N}, $\\\\end{document}</tex-math></inline-formula> the function <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\varphi $\\\\end{document}</tex-math></inline-formula> is increasing and the objective function <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ f $\\\\end{document}</tex-math></inline-formula> is semistrictly quasiconcave. By utilizing the nice properties of Pareto set to define the partitions of branch and bound scheme, the proposed algorithms are promised to be more accurate and efficient than ones using the multi-objective evolutionary approach such as NSGA-III. This is validated by some computational experiments. The Stochastic Portfolio Selection Problem is chosen as an application of our algorithm, where Sharpe ratio is a semistrictly quasiconcave objective function.</p>\",\"PeriodicalId\":347719,\"journal\":{\"name\":\"Journal of Industrial &amp; Management Optimization\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial &amp; Management Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jimo.2022029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial &amp; Management Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jimo.2022029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Optimization over Pareto set of a semistrictly quasiconcave vector maximization problem has many applications in economics and technology but it is a challenging task because of the nonconvexity of objective functions and constraint sets. In this article, we propose a novel approach, which is a Branch-and-Bound algorithm for maximizing a composite function \begin{document}$ \varphi(f(x)) $\end{document} over the non-dominated solution set of the \begin{document}$ p $\end{document}-objective programming problem, where \begin{document}$ p\geq 2, p \in \mathbb{N}, $\end{document} the function \begin{document}$ \varphi $\end{document} is increasing and the objective function \begin{document}$ f $\end{document} is semistrictly quasiconcave. By utilizing the nice properties of Pareto set to define the partitions of branch and bound scheme, the proposed algorithms are promised to be more accurate and efficient than ones using the multi-objective evolutionary approach such as NSGA-III. This is validated by some computational experiments. The Stochastic Portfolio Selection Problem is chosen as an application of our algorithm, where Sharpe ratio is a semistrictly quasiconcave objective function.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing over Pareto set of semistrictly quasiconcave vector maximization and application to stochastic portfolio selection

Optimization over Pareto set of a semistrictly quasiconcave vector maximization problem has many applications in economics and technology but it is a challenging task because of the nonconvexity of objective functions and constraint sets. In this article, we propose a novel approach, which is a Branch-and-Bound algorithm for maximizing a composite function \begin{document}$ \varphi(f(x)) $\end{document} over the non-dominated solution set of the \begin{document}$ p $\end{document}-objective programming problem, where \begin{document}$ p\geq 2, p \in \mathbb{N}, $\end{document} the function \begin{document}$ \varphi $\end{document} is increasing and the objective function \begin{document}$ f $\end{document} is semistrictly quasiconcave. By utilizing the nice properties of Pareto set to define the partitions of branch and bound scheme, the proposed algorithms are promised to be more accurate and efficient than ones using the multi-objective evolutionary approach such as NSGA-III. This is validated by some computational experiments. The Stochastic Portfolio Selection Problem is chosen as an application of our algorithm, where Sharpe ratio is a semistrictly quasiconcave objective function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pricing path-dependent options under the Hawkes jump diffusion process Asymptotic analysis of scalarization functions and applications Product line extension with a green added product: Impacts of segmented consumer preference on supply chain improvement and consumer surplus Optimal investment, consumption and life insurance strategies under stochastic differential utility with habit formation Imitative innovation or independent innovation strategic choice of emerging economies in non-cooperative innovation competition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1