chc -sched:一个基于约束的层次拓扑结构的HPC放置组调度程序

L. Schares, A. Tantawi, P. Maniotis, Ming-Hung Chen, Claudia Misale, Seetharami R. Seelam, Hao Yu
{"title":"chc -sched:一个基于约束的层次拓扑结构的HPC放置组调度程序","authors":"L. Schares, A. Tantawi, P. Maniotis, Ming-Hung Chen, Claudia Misale, Seetharami R. Seelam, Hao Yu","doi":"10.1109/IPDPS54959.2023.00050","DOIUrl":null,"url":null,"abstract":"Efficient placement of advanced HPC and AI workloads with application constraints is raising challenges for resource schedulers on shared infrastructures, such as the Cloud. In this work, we propose a novel Constraints- and Heuristics-based scheduler on HIerarchical Topologies for High-Performance Computing workloads in the Cloud (chic-sched, for short). Our heuristics-based algorithm enables placement across multiple levels in a network hierarchy with loosely specified constraints, and it works without retries by providing suboptimal placements to minimize placement failures. This allows for fast scheduling at scale, and the O(N log N) complexity enables placement decisions within tens of milliseconds for groups of hundreds of virtual machines (VM). We introduce a new and simple metric to quantify the goodness of group placements. With this metric, in terms of deviation from ideal placements, we show that chic-sched is 20-50% better than the common bestFit or worstFit algorithms in all scenarios of two-level placements with spreading and packing constraints. We evaluate chic-sched with publicly available VM-request traces from a production Cloud, and, comparing against bestFit, we show that it achieves 8% lower placement failure rates and more than 40% better placement locality. Finally, to quantify the goodness of constraints-based placements, we conduct experiments with a realistic MPI workload on synthetically allocated VM clusters in a public cloud. We measure a 9% performance improvement over an adverse placement in a scenario where our heuristics-based scheduler would return a good, but not perfect, placement.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chic-sched: a HPC Placement-Group Scheduler on Hierarchical Topologies with Constraints\",\"authors\":\"L. Schares, A. Tantawi, P. Maniotis, Ming-Hung Chen, Claudia Misale, Seetharami R. Seelam, Hao Yu\",\"doi\":\"10.1109/IPDPS54959.2023.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient placement of advanced HPC and AI workloads with application constraints is raising challenges for resource schedulers on shared infrastructures, such as the Cloud. In this work, we propose a novel Constraints- and Heuristics-based scheduler on HIerarchical Topologies for High-Performance Computing workloads in the Cloud (chic-sched, for short). Our heuristics-based algorithm enables placement across multiple levels in a network hierarchy with loosely specified constraints, and it works without retries by providing suboptimal placements to minimize placement failures. This allows for fast scheduling at scale, and the O(N log N) complexity enables placement decisions within tens of milliseconds for groups of hundreds of virtual machines (VM). We introduce a new and simple metric to quantify the goodness of group placements. With this metric, in terms of deviation from ideal placements, we show that chic-sched is 20-50% better than the common bestFit or worstFit algorithms in all scenarios of two-level placements with spreading and packing constraints. We evaluate chic-sched with publicly available VM-request traces from a production Cloud, and, comparing against bestFit, we show that it achieves 8% lower placement failure rates and more than 40% better placement locality. Finally, to quantify the goodness of constraints-based placements, we conduct experiments with a realistic MPI workload on synthetically allocated VM clusters in a public cloud. We measure a 9% performance improvement over an adverse placement in a scenario where our heuristics-based scheduler would return a good, but not perfect, placement.\",\"PeriodicalId\":343684,\"journal\":{\"name\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS54959.2023.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高级高性能计算和人工智能工作负载在应用程序约束下的有效放置,给共享基础设施(如云)上的资源调度器带来了挑战。在这项工作中,我们提出了一种新的基于约束和启发式的分层拓扑调度器,用于云中的高性能计算工作负载(简称chic-sched)。我们基于启发式的算法允许在具有松散指定约束的网络层次结构中跨多个级别进行放置,并且通过提供次优放置来最小化放置失败,无需重试。这允许大规模的快速调度,并且O(N log N)的复杂性使数百个虚拟机(VM)的组可以在几十毫秒内做出放置决策。我们引入了一个新的和简单的度量来量化群体安置的好坏。有了这个度量,就与理想位置的偏差而言,我们表明,在所有具有扩展和打包约束的两级位置的场景中,chicc -sched比常见的bestFit或worstFit算法好20-50%。我们使用来自生产云中公开可用的vm请求跟踪来评估chic-sched,并且与bestFit进行比较,我们发现它的放置失败率降低了8%,放置位置优于40%以上。最后,为了量化基于约束的布局的优点,我们在公共云中综合分配的VM集群上使用现实的MPI工作负载进行了实验。在基于启发式的调度器返回良好但不完美的位置的场景中,我们测量了9%的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chic-sched: a HPC Placement-Group Scheduler on Hierarchical Topologies with Constraints
Efficient placement of advanced HPC and AI workloads with application constraints is raising challenges for resource schedulers on shared infrastructures, such as the Cloud. In this work, we propose a novel Constraints- and Heuristics-based scheduler on HIerarchical Topologies for High-Performance Computing workloads in the Cloud (chic-sched, for short). Our heuristics-based algorithm enables placement across multiple levels in a network hierarchy with loosely specified constraints, and it works without retries by providing suboptimal placements to minimize placement failures. This allows for fast scheduling at scale, and the O(N log N) complexity enables placement decisions within tens of milliseconds for groups of hundreds of virtual machines (VM). We introduce a new and simple metric to quantify the goodness of group placements. With this metric, in terms of deviation from ideal placements, we show that chic-sched is 20-50% better than the common bestFit or worstFit algorithms in all scenarios of two-level placements with spreading and packing constraints. We evaluate chic-sched with publicly available VM-request traces from a production Cloud, and, comparing against bestFit, we show that it achieves 8% lower placement failure rates and more than 40% better placement locality. Finally, to quantify the goodness of constraints-based placements, we conduct experiments with a realistic MPI workload on synthetically allocated VM clusters in a public cloud. We measure a 9% performance improvement over an adverse placement in a scenario where our heuristics-based scheduler would return a good, but not perfect, placement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1