面向CPS/IoT生态系统的自适应信号滤波平台

Haris Isakovic, S. Dangl, Zlatan Tucakovic, R. Grosu
{"title":"面向CPS/IoT生态系统的自适应信号滤波平台","authors":"Haris Isakovic, S. Dangl, Zlatan Tucakovic, R. Grosu","doi":"10.1109/ICIT46573.2021.9453496","DOIUrl":null,"url":null,"abstract":"The rapid increase in number of devices in Internet-of-Things generates astronomic amounts of data. Dealing with noisy and low quality data uses more effort than the data analysis itself. Dealing with noisy data at the source would significantly reduce the effort of pre-processing during analysis, as well as the storage and bandwidth overhead. In this paper we introduce an Adaptive Signal Processing Platform (ASPF) for CPS/IoT Ecosystems. It provides ability to dynamically detect noise variation in a signal and successfully filter these components out of the signal leaving only clean and useful data. The paper shows two approaches with different requirements on effort and scalability.","PeriodicalId":193338,"journal":{"name":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Signal Filtering Platform for a CPS/IoT Ecosystem\",\"authors\":\"Haris Isakovic, S. Dangl, Zlatan Tucakovic, R. Grosu\",\"doi\":\"10.1109/ICIT46573.2021.9453496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid increase in number of devices in Internet-of-Things generates astronomic amounts of data. Dealing with noisy and low quality data uses more effort than the data analysis itself. Dealing with noisy data at the source would significantly reduce the effort of pre-processing during analysis, as well as the storage and bandwidth overhead. In this paper we introduce an Adaptive Signal Processing Platform (ASPF) for CPS/IoT Ecosystems. It provides ability to dynamically detect noise variation in a signal and successfully filter these components out of the signal leaving only clean and useful data. The paper shows two approaches with different requirements on effort and scalability.\",\"PeriodicalId\":193338,\"journal\":{\"name\":\"2021 22nd IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT46573.2021.9453496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT46573.2021.9453496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网设备数量的快速增长产生了天文数字的数据量。处理嘈杂和低质量的数据比数据分析本身需要更多的努力。在源处处理噪声数据将大大减少分析过程中的预处理工作量,以及存储和带宽开销。本文介绍了一种用于CPS/IoT生态系统的自适应信号处理平台(ASPF)。它提供了动态检测信号中的噪声变化的能力,并成功地将这些成分从信号中过滤出来,只留下干净和有用的数据。本文给出了两种对工作量和可扩展性有不同要求的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Signal Filtering Platform for a CPS/IoT Ecosystem
The rapid increase in number of devices in Internet-of-Things generates astronomic amounts of data. Dealing with noisy and low quality data uses more effort than the data analysis itself. Dealing with noisy data at the source would significantly reduce the effort of pre-processing during analysis, as well as the storage and bandwidth overhead. In this paper we introduce an Adaptive Signal Processing Platform (ASPF) for CPS/IoT Ecosystems. It provides ability to dynamically detect noise variation in a signal and successfully filter these components out of the signal leaving only clean and useful data. The paper shows two approaches with different requirements on effort and scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Z Packed U-cell (ZPUC) topology, configuration of single DC Source single-phase and three-phase Multilevel Converter Optimal Utilization of the Dual-Active Bridge Converter with Bidirectional Charge Control Long Short-Term Memory based RNN for COVID-19 disease prediction Bispectrum and Kurtosis Analysis of Rotor Currents for the Detection of Field Winding Faults in Synchronous Motors Sequence-Frame Coupling Admittance Analysis and Stability of VSC Connected to Weak Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1