深度犯罪:基于真实故障的深度学习系统突变测试

Nargiz Humbatova, Gunel Jahangirova, P. Tonella
{"title":"深度犯罪:基于真实故障的深度学习系统突变测试","authors":"Nargiz Humbatova, Gunel Jahangirova, P. Tonella","doi":"10.1145/3460319.3464825","DOIUrl":null,"url":null,"abstract":"Deep Learning (DL) solutions are increasingly adopted, but how to test them remains a major open research problem. Existing and new testing techniques have been proposed for and adapted to DL systems, including mutation testing. However, no approach has investigated the possibility to simulate the effects of real DL faults by means of mutation operators. We have defined 35 DL mutation operators relying on 3 empirical studies about real faults in DL systems. We followed a systematic process to extract the mutation operators from the existing fault taxonomies, with a formal phase of conflict resolution in case of disagreement. We have implemented 24 of these DL mutation operators into DeepCrime, the first source-level pre-training mutation tool based on real DL faults. We have assessed our mutation operators to understand their characteristics: whether they produce interesting, i.e., killable but not trivial, mutations. Then, we have compared the sensitivity of our tool to the changes in the quality of test data with that of DeepMutation++, an existing post-training DL mutation tool.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"DeepCrime: mutation testing of deep learning systems based on real faults\",\"authors\":\"Nargiz Humbatova, Gunel Jahangirova, P. Tonella\",\"doi\":\"10.1145/3460319.3464825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning (DL) solutions are increasingly adopted, but how to test them remains a major open research problem. Existing and new testing techniques have been proposed for and adapted to DL systems, including mutation testing. However, no approach has investigated the possibility to simulate the effects of real DL faults by means of mutation operators. We have defined 35 DL mutation operators relying on 3 empirical studies about real faults in DL systems. We followed a systematic process to extract the mutation operators from the existing fault taxonomies, with a formal phase of conflict resolution in case of disagreement. We have implemented 24 of these DL mutation operators into DeepCrime, the first source-level pre-training mutation tool based on real DL faults. We have assessed our mutation operators to understand their characteristics: whether they produce interesting, i.e., killable but not trivial, mutations. Then, we have compared the sensitivity of our tool to the changes in the quality of test data with that of DeepMutation++, an existing post-training DL mutation tool.\",\"PeriodicalId\":188008,\"journal\":{\"name\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460319.3464825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

深度学习(DL)解决方案被越来越多地采用,但如何测试它们仍然是一个主要的开放研究问题。现有的和新的测试技术已经提出并适应于DL系统,包括突变测试。然而,没有一种方法研究了利用突变算子模拟真实DL故障影响的可能性。基于对深度学习系统真实故障的3个实证研究,我们定义了35个深度学习突变算子。我们遵循一个系统的过程,从现有的故障分类中提取突变操作符,并在不同意的情况下正式解决冲突阶段。我们已经在DeepCrime中实现了24个这样的深度学习突变算子,这是第一个基于真实深度学习故障的源级预训练突变工具。我们已经评估了我们的突变操作符,以了解它们的特征:它们是否产生有趣的,即可杀死但不是微不足道的突变。然后,我们将我们的工具对测试数据质量变化的敏感性与DeepMutation++(一种现有的训练后深度学习突变工具)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepCrime: mutation testing of deep learning systems based on real faults
Deep Learning (DL) solutions are increasingly adopted, but how to test them remains a major open research problem. Existing and new testing techniques have been proposed for and adapted to DL systems, including mutation testing. However, no approach has investigated the possibility to simulate the effects of real DL faults by means of mutation operators. We have defined 35 DL mutation operators relying on 3 empirical studies about real faults in DL systems. We followed a systematic process to extract the mutation operators from the existing fault taxonomies, with a formal phase of conflict resolution in case of disagreement. We have implemented 24 of these DL mutation operators into DeepCrime, the first source-level pre-training mutation tool based on real DL faults. We have assessed our mutation operators to understand their characteristics: whether they produce interesting, i.e., killable but not trivial, mutations. Then, we have compared the sensitivity of our tool to the changes in the quality of test data with that of DeepMutation++, an existing post-training DL mutation tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic table structure identification in spreadsheets Parema: an unpacking framework for demystifying VM-based Android packers TERA: optimizing stochastic regression tests in machine learning projects Empirically evaluating readily available information for regression test optimization in continuous integration RESTest: automated black-box testing of RESTful web APIs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1