使用特权信息的行人检测

Zhiquan Qi, Ying-jie Tian, Lingfeng Niu, Fan Meng, Limeng Cui, Yong Shi
{"title":"使用特权信息的行人检测","authors":"Zhiquan Qi, Ying-jie Tian, Lingfeng Niu, Fan Meng, Limeng Cui, Yong Shi","doi":"10.1109/ICDMW.2015.70","DOIUrl":null,"url":null,"abstract":"How to balance the speed and the quality is always a challenging issue in pedestrian detection. In this paper, we introduce the Learning model Using Privileged Information (LUPI), which can accelerate the convergence rate of learning and effectively improve the quality without sacrificing the speed. In more detail, we give the clear definition of the privileged information, which is only available at the training stage but is never available for the testing set, for the pedestrian detection problem and show how much the privileged information helps the detector to improve the quality. All experimental results show the robustness and effectiveness of the proposed method, at the same time show that the privileged information offers a significant improvement.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pedestrian Detection Using Privileged Information\",\"authors\":\"Zhiquan Qi, Ying-jie Tian, Lingfeng Niu, Fan Meng, Limeng Cui, Yong Shi\",\"doi\":\"10.1109/ICDMW.2015.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to balance the speed and the quality is always a challenging issue in pedestrian detection. In this paper, we introduce the Learning model Using Privileged Information (LUPI), which can accelerate the convergence rate of learning and effectively improve the quality without sacrificing the speed. In more detail, we give the clear definition of the privileged information, which is only available at the training stage but is never available for the testing set, for the pedestrian detection problem and show how much the privileged information helps the detector to improve the quality. All experimental results show the robustness and effectiveness of the proposed method, at the same time show that the privileged information offers a significant improvement.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如何平衡行人检测的速度和质量一直是行人检测中一个具有挑战性的问题。本文引入了利用特权信息(Privileged Information, LUPI)的学习模型,在不牺牲学习速度的前提下,加快了学习的收敛速度,有效地提高了学习质量。更详细地说,对于行人检测问题,我们给出了特权信息的明确定义,特权信息只在训练阶段可用,而不能用于测试集,并展示了特权信息对检测器提高质量的帮助程度。实验结果表明了该方法的鲁棒性和有效性,同时对特权信息有了明显的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pedestrian Detection Using Privileged Information
How to balance the speed and the quality is always a challenging issue in pedestrian detection. In this paper, we introduce the Learning model Using Privileged Information (LUPI), which can accelerate the convergence rate of learning and effectively improve the quality without sacrificing the speed. In more detail, we give the clear definition of the privileged information, which is only available at the training stage but is never available for the testing set, for the pedestrian detection problem and show how much the privileged information helps the detector to improve the quality. All experimental results show the robustness and effectiveness of the proposed method, at the same time show that the privileged information offers a significant improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1