基于两阶段优化的鲁棒运动目标分割

Jianwei Ding, Xin Zhao, Kaiqi Huang, T. Tan
{"title":"基于两阶段优化的鲁棒运动目标分割","authors":"Jianwei Ding, Xin Zhao, Kaiqi Huang, T. Tan","doi":"10.1109/ACPR.2011.6166695","DOIUrl":null,"url":null,"abstract":"Inspired by interactive segmentation algorithms, we propose an online and unsupervised technique to extract moving objects from videos captured by stationary cameras. Our method consists of two main optimization steps, from local optimal extraction to global optimal segmentation. In the first stage, reliable foreground and background pixels are extracted from input image by modeling distributions of foreground and background with color and motion cues. These reliable pixels provide hard constraints for the next step of segmentation. Then global optimal segmentation of moving object is implemented by graph cuts in the second stage. Experimental results on several challenging videos demonstrate the effectiveness and robustness of the proposed approach.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust moving object segmentation with two-stage optimization\",\"authors\":\"Jianwei Ding, Xin Zhao, Kaiqi Huang, T. Tan\",\"doi\":\"10.1109/ACPR.2011.6166695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by interactive segmentation algorithms, we propose an online and unsupervised technique to extract moving objects from videos captured by stationary cameras. Our method consists of two main optimization steps, from local optimal extraction to global optimal segmentation. In the first stage, reliable foreground and background pixels are extracted from input image by modeling distributions of foreground and background with color and motion cues. These reliable pixels provide hard constraints for the next step of segmentation. Then global optimal segmentation of moving object is implemented by graph cuts in the second stage. Experimental results on several challenging videos demonstrate the effectiveness and robustness of the proposed approach.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

受交互式分割算法的启发,我们提出了一种在线和无监督的技术,从固定摄像机捕获的视频中提取运动物体。我们的方法包括两个主要的优化步骤,从局部最优提取到全局最优分割。在第一阶段,通过使用颜色和运动线索对前景和背景分布进行建模,从输入图像中提取可靠的前景和背景像素。这些可靠的像素为下一步的分割提供了严格的约束。第二阶段通过图割实现运动目标的全局最优分割。在几个具有挑战性的视频上的实验结果证明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust moving object segmentation with two-stage optimization
Inspired by interactive segmentation algorithms, we propose an online and unsupervised technique to extract moving objects from videos captured by stationary cameras. Our method consists of two main optimization steps, from local optimal extraction to global optimal segmentation. In the first stage, reliable foreground and background pixels are extracted from input image by modeling distributions of foreground and background with color and motion cues. These reliable pixels provide hard constraints for the next step of segmentation. Then global optimal segmentation of moving object is implemented by graph cuts in the second stage. Experimental results on several challenging videos demonstrate the effectiveness and robustness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1