用离散小波变换分析培养脑组织的自发活动

Jeffrey D. Johnson, D. Plenz, John M. Beggs, Wei Li, M. Mieier, N. Miltner, K. Owe
{"title":"用离散小波变换分析培养脑组织的自发活动","authors":"Jeffrey D. Johnson, D. Plenz, John M. Beggs, Wei Li, M. Mieier, N. Miltner, K. Owe","doi":"10.1109/BIBE.2003.1188930","DOIUrl":null,"url":null,"abstract":"Multi-microelectrode array devices can be used to simultaneously record activity from multiple neurons distributed in a tissue slice. One of the brain functions being investigated with microelectrode arrays is the periodic behavior of spontaneously active neurons in the cortex and basal ganglia.. However, these recording methods generate several hundred megabytes of data per hour and, currently, there is no efficient and accurate approach for the identification of the repeated pattern. We present an approach that uses the discrete wavelet transform to accelerate identification of repeating patterns of neural activity. We perform match filtering on the coefficient data, not the time-domain data. Our wavelet approach operates on 1/4 the data but provides similar classification abilities as the time domain correlation.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of spontaneous activity in cultured brain tissue using the discrete wavelet transform\",\"authors\":\"Jeffrey D. Johnson, D. Plenz, John M. Beggs, Wei Li, M. Mieier, N. Miltner, K. Owe\",\"doi\":\"10.1109/BIBE.2003.1188930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-microelectrode array devices can be used to simultaneously record activity from multiple neurons distributed in a tissue slice. One of the brain functions being investigated with microelectrode arrays is the periodic behavior of spontaneously active neurons in the cortex and basal ganglia.. However, these recording methods generate several hundred megabytes of data per hour and, currently, there is no efficient and accurate approach for the identification of the repeated pattern. We present an approach that uses the discrete wavelet transform to accelerate identification of repeating patterns of neural activity. We perform match filtering on the coefficient data, not the time-domain data. Our wavelet approach operates on 1/4 the data but provides similar classification abilities as the time domain correlation.\",\"PeriodicalId\":178814,\"journal\":{\"name\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2003.1188930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多微电极阵列装置可用于同时记录分布在组织切片上的多个神经元的活动。微电极阵列研究的脑功能之一是皮层和基底神经节自发活动神经元的周期性行为。然而,这些记录方法每小时产生几百兆字节的数据,目前还没有有效和准确的方法来识别重复模式。我们提出了一种使用离散小波变换来加速识别神经活动重复模式的方法。我们对系数数据执行匹配过滤,而不是时域数据。我们的小波方法对1/4的数据进行操作,但提供了与时域相关相似的分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of spontaneous activity in cultured brain tissue using the discrete wavelet transform
Multi-microelectrode array devices can be used to simultaneously record activity from multiple neurons distributed in a tissue slice. One of the brain functions being investigated with microelectrode arrays is the periodic behavior of spontaneously active neurons in the cortex and basal ganglia.. However, these recording methods generate several hundred megabytes of data per hour and, currently, there is no efficient and accurate approach for the identification of the repeated pattern. We present an approach that uses the discrete wavelet transform to accelerate identification of repeating patterns of neural activity. We perform match filtering on the coefficient data, not the time-domain data. Our wavelet approach operates on 1/4 the data but provides similar classification abilities as the time domain correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GenoMosaic: on-demand multiple genome comparison and comparative annotation Respiratory gating for MRI and MRS in rodents DHC: a density-based hierarchical clustering method for time series gene expression data Evolving bubbles for prostate surface detection from TRUS images A repulsive clustering algorithm for gene expression data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1