基于U-Net卷积网络的牙科x射线图像中牙齿和背景的自动分割

A. Fariza, A. Arifin, E. Astuti
{"title":"基于U-Net卷积网络的牙科x射线图像中牙齿和背景的自动分割","authors":"A. Fariza, A. Arifin, E. Astuti","doi":"10.1109/ICSITech49800.2020.9392039","DOIUrl":null,"url":null,"abstract":"Tooth and background segmentation in dental X-ray is used to produce an area of a tooth by removing areas of tissue and other neighboring teeth. This presents challenges due to a large number of superimposed (overlapping) images of teeth between the adjacent teeth and the difficulty of determining the area of the tooth with other tissues automatically. This study proposes a new approach for the automatic segmentation of dental X-ray images using the U-Net convolution network. The stages used in the training process consist of data augmentation, pre-processing with Contrast Limited Adequate Histogram Equalization (CLAHE) and gamma adjustment, and training with the U-Net architecture. While the testing process consists of pre-processing, prediction, and removing small areas in the background. The experimental results show the average accuracy of the proposed U-Net convolutional network segmentation accuracy achieves excellent results, 97.61% compared to spatial Fuzzy C-means with gaussian kernel-based of 65.55%. It shows the proposed method achieves superior automatic tooth and background segmentation. The experiment result among 1907 image testing, there are 14.58% producing segmentation because of biased boundaries on the tissue at the root of the tooth and overlapping images on the enamel.","PeriodicalId":408532,"journal":{"name":"2020 6th International Conference on Science in Information Technology (ICSITech)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Tooth and Background Segmentation in Dental X-ray Using U-Net Convolution Network\",\"authors\":\"A. Fariza, A. Arifin, E. Astuti\",\"doi\":\"10.1109/ICSITech49800.2020.9392039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tooth and background segmentation in dental X-ray is used to produce an area of a tooth by removing areas of tissue and other neighboring teeth. This presents challenges due to a large number of superimposed (overlapping) images of teeth between the adjacent teeth and the difficulty of determining the area of the tooth with other tissues automatically. This study proposes a new approach for the automatic segmentation of dental X-ray images using the U-Net convolution network. The stages used in the training process consist of data augmentation, pre-processing with Contrast Limited Adequate Histogram Equalization (CLAHE) and gamma adjustment, and training with the U-Net architecture. While the testing process consists of pre-processing, prediction, and removing small areas in the background. The experimental results show the average accuracy of the proposed U-Net convolutional network segmentation accuracy achieves excellent results, 97.61% compared to spatial Fuzzy C-means with gaussian kernel-based of 65.55%. It shows the proposed method achieves superior automatic tooth and background segmentation. The experiment result among 1907 image testing, there are 14.58% producing segmentation because of biased boundaries on the tissue at the root of the tooth and overlapping images on the enamel.\",\"PeriodicalId\":408532,\"journal\":{\"name\":\"2020 6th International Conference on Science in Information Technology (ICSITech)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Science in Information Technology (ICSITech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSITech49800.2020.9392039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITech49800.2020.9392039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

牙齿x射线中的牙齿和背景分割是通过去除组织和其他邻近牙齿的区域来产生牙齿的一个区域。由于相邻牙齿之间存在大量重叠的牙齿图像,并且难以自动确定牙齿与其他组织的区域,这就提出了挑战。本文提出了一种基于U-Net卷积网络的牙科x射线图像自动分割方法。训练过程中使用的阶段包括数据增强,对比度有限的适当直方图均衡化(CLAHE)和伽马调整的预处理,以及U-Net架构的训练。而测试过程包括预处理、预测和去除背景中的小区域。实验结果表明,所提出的U-Net卷积网络的平均分割准确率达到了97.61%,而基于高斯核的空间模糊c均值分割准确率为65.55%。实验结果表明,该方法能较好地实现牙齿和背景的自动分割。实验结果在1907个图像检测中,14.58%的图像产生分割是由于牙根组织边界偏置和牙釉质图像重叠造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Tooth and Background Segmentation in Dental X-ray Using U-Net Convolution Network
Tooth and background segmentation in dental X-ray is used to produce an area of a tooth by removing areas of tissue and other neighboring teeth. This presents challenges due to a large number of superimposed (overlapping) images of teeth between the adjacent teeth and the difficulty of determining the area of the tooth with other tissues automatically. This study proposes a new approach for the automatic segmentation of dental X-ray images using the U-Net convolution network. The stages used in the training process consist of data augmentation, pre-processing with Contrast Limited Adequate Histogram Equalization (CLAHE) and gamma adjustment, and training with the U-Net architecture. While the testing process consists of pre-processing, prediction, and removing small areas in the background. The experimental results show the average accuracy of the proposed U-Net convolutional network segmentation accuracy achieves excellent results, 97.61% compared to spatial Fuzzy C-means with gaussian kernel-based of 65.55%. It shows the proposed method achieves superior automatic tooth and background segmentation. The experiment result among 1907 image testing, there are 14.58% producing segmentation because of biased boundaries on the tissue at the root of the tooth and overlapping images on the enamel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Long Short Term Memory Implemented for Rainfall Forecasting A Comparative Analysis of QoS parameters measurement applying packet scheduling algorithms on Cisco 2800 Router with Static Routing A Review of Intrusion Detection System in IoT with Machine Learning Approach: Current and Future Research Face Skin Disease Detection with Textural Feature Extraction Cleavage self : a new concept in reproduction stage of genetic algorithm for rainfall prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1