一种基于特征映射融合的三维视频显著区域计算方法

Lino Ferreira, L. Cruz, P. Assunção
{"title":"一种基于特征映射融合的三维视频显著区域计算方法","authors":"Lino Ferreira, L. Cruz, P. Assunção","doi":"10.1109/ICME.2015.7177474","DOIUrl":null,"url":null,"abstract":"Efficient computation of visual saliency regions has been a research problem in the recent past, but in the case of 3D content no definite solutions exist. This paper presents a computational method to determine saliency regions in 3D video, based on fusion of three feature maps containing perceptually relevant information from spatial, temporal and depth dimensions. The proposed method follows a bottom-up approach to predict the 3D regions where observers tend to hold their gaze for longer periods. Fusion of the feature maps is combined with a center-bias weighting function to determine 3D visual saliency map. For validation and performance evaluation, a publicly available database of 3D video sequences and corresponding fixation density maps was used as ground-truth. The experimental results show that the proposed method achieves better performance than other state-of-art models.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A method to compute saliency regions in 3D video based on fusion of feature maps\",\"authors\":\"Lino Ferreira, L. Cruz, P. Assunção\",\"doi\":\"10.1109/ICME.2015.7177474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient computation of visual saliency regions has been a research problem in the recent past, but in the case of 3D content no definite solutions exist. This paper presents a computational method to determine saliency regions in 3D video, based on fusion of three feature maps containing perceptually relevant information from spatial, temporal and depth dimensions. The proposed method follows a bottom-up approach to predict the 3D regions where observers tend to hold their gaze for longer periods. Fusion of the feature maps is combined with a center-bias weighting function to determine 3D visual saliency map. For validation and performance evaluation, a publicly available database of 3D video sequences and corresponding fixation density maps was used as ground-truth. The experimental results show that the proposed method achieves better performance than other state-of-art models.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

视觉显著区域的高效计算一直是近年来研究的一个问题,但在3D内容的情况下,没有明确的解决方案。本文提出了一种基于融合三维视频中包含空间、时间和深度维度感知相关信息的三个特征图的计算方法来确定3D视频中的显著区域。提出的方法采用自下而上的方法来预测观察者倾向于长时间凝视的3D区域。结合特征图的融合和中心偏置加权函数确定三维视觉显著性图。为了验证和性能评估,使用公开可用的3D视频序列数据库和相应的固定密度图作为基础事实。实验结果表明,该方法比现有的模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method to compute saliency regions in 3D video based on fusion of feature maps
Efficient computation of visual saliency regions has been a research problem in the recent past, but in the case of 3D content no definite solutions exist. This paper presents a computational method to determine saliency regions in 3D video, based on fusion of three feature maps containing perceptually relevant information from spatial, temporal and depth dimensions. The proposed method follows a bottom-up approach to predict the 3D regions where observers tend to hold their gaze for longer periods. Fusion of the feature maps is combined with a center-bias weighting function to determine 3D visual saliency map. For validation and performance evaluation, a publicly available database of 3D video sequences and corresponding fixation density maps was used as ground-truth. The experimental results show that the proposed method achieves better performance than other state-of-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1